Verkehrsuntersuchung zum Ausbau des Knotenpunktes "Franzenburg"

im Auftrag der Stadt Wetzlar

Erläuterungsbericht

07. Mai 2018

ENTWURF

VERKEHRSUNTERSUCHUNG ZUM AUSBAU DES KNOTENPUNKTES "FRANZENBURG"

im Auftrag der Stadt Wetzlar

Erläuterungsbericht

07. Mai 2018

ENTWURF

Bearbeitung:

M.Eng. Yannick Seinsoth Bettina Fischer

HEINZ + FEIER GmbH

Kreuzberger Ring 24 65205 Wiesbaden

Telefon 0611 - 71464 - 0 Telefax 0611 - 7146479 E-Mail info@heinz-feier.de

INHALT

				Seite
1.	A	AUSGANG	SSITUATION UND AUFGABENSTELLUNG	2
2.		JNTERSUG BESTAND	CHUNGSGEBIET UND VERKEHRSBELASTUNGEN IM	3
3.	Z	ZUKÜNFTI	GE VERKEHRSBELASTUNGEN	4
	3.1	Nutzung	sänderungen	4
	3.2	Abschätz	zung des Verkehrsaufkommens	4
		3.2.1	3. Bauabschnitt Leitz-Park	4
		3.2.2	Neubau eines Industriebetriebes im Leitz-Park (4. Bauabschnitt)	10
		3.2.3	Umzug der Theodor-Heuss-Schule aus dem Schulzentrum (Frankfurter Straße) in die Sportparkstraße	12
		3.2.4	Neubau der Wohnbaugebiete Blankenfeld 2. BA und 3. BA	14
		3.2.5	Gewerbegebiet Münchholzhausen Nord und Baugebiet Schattenlänge	16
	3.3	Räumlich	ne Verteilung des prognostizierten Verkehrsaufkommens	16
	3.4	Prognost	izierte Belastungszustände	22
4.	L	EISTUNG	SFÄHIGKEITSBETRACHTUNGEN	24
	4.1	Methodik	(24
	4.2	Ergebnis	se	27

		4.2.1	Frankfurter Straße / Spilburgstraße / Hasenpfad (KP	27
			401)	27
		4.2.2	Frankfurter Straße / L 3451 / L 3360 (KP 402)	28
		4.2.3	L 3451 / Franzenburg (KP 403)	29
		4.2.4	L 3451 / Schanzenfeldstraße (KP 404)	30
		4.2.5	L 3451 / Am Leitz-Park (KP 405)	31
		4.2.6	Frankfurter Straße / Lessingstraße (KP 406)	32
		4.2.7	Spilburgstraße / Schanzenfeldstraße / Sportparkstraße / Charlotte-Bamberg-Straße (KP 407)	33
5.	Р	PLANUNGS	SEMPFEHLUNGEN	34
	5.1	Frankfurt	ter Straße / Spilburgstraße / Hasenpfad (KP 401)	34
	5.2	Frankfurt	ter Straße / L 3451 / L 3360 (KP 402)	35
	5.3	L 3451 /	Franzenburg (KP 403)	40
	5.4	L 3451 /	Schanzenfeldstraße (KP 404)	41
	5.5	L 3451 /	Am Leitz-Park (KP 405)	42
	5.6	Frankfurt	ter Straße / Lessingstraße (KP 406)	44
	5.7		straße / Schanzenfeldstraße / Sportparkstraße / Charlotte- g-Straße (KP 407)	45

ANLAGEN

ABBILDUNGEN

1. AUSGANGSSITUATION UND AUFGABENSTELLUNG

Im Bereich Spilburg in Wetzlar ist der zurzeit vorfahrtgeregelte Knotenpunkt L 3451 / L 3360 regelmäßig überlastet und soll daher umgebaut werden. Im Mai 2016 wurde die HEINZ + FEIER GmbH von der Stadt Wetzlar beauftragt, eine Verkehrsuntersuchung für diesen Knotenpunkt durchzuführen. Im Zuge dessen sollen Varianten zur leistungsfähigeren Gestaltung des Knotenpunktes untersucht werden. Im August 2017 wurde die Untersuchung aufgrund diverser Nutzungsänderungen im umliegenden Gebiet auf die Betrachtung von insgesamt sieben Knotenpunkten (inklusive des Knotenpunkts L 3451 / L 3360), sowie die Abschätzung des durch die Nutzungsänderungen prognostizierten Verkehrsaufkommens erweitert.

Zu den Nutzungsänderungen gehören im Bereich des sogenannten Leitz-Parks (3. Bauabschnitt) der Neubau eines Tagungshotels, einer Werkstatt für Sonderoptik, eines Optik-Museums sowie von Büroflächen zur Fremdvermietung. Zudem zieht die Theodor-Heuss-Schule von dem Schulzentrum südlich des Knotenpunktes L 3451 / 3360 in die Sportparkstraße um. Des Weiteren sind zwei Bauabschnitte des Wohnbaugebietes Blankenfeld östlich der L 3451, der Auszug der Volkshochschule aus der Spilburgstraße, sowie in einem 4. Bauabschnitt des Leitz-Parks ein produzierender Industriebetrieb zu berücksichtigen. Außerdem wird das in /1/ abgeschätzte Verkehrsaufkommen des geplanten Gewerbegebietes Münchholzhausen Nord und des Baugebietes Schattenlänge (1. und 2. BA) berücksichtigt.

In der vorliegenden Verkehrsuntersuchung werden neben der Untersuchung der Bestandssituation zwei verschiedene Prognosefälle betrachtet, die als Prognosefall A und Prognosefall B bezeichnet und wie folgt unterschieden werden:

- **Prognosefall A:** Nicht-Berücksichtigung folgender Nutzungsänderungen:
 - o Gewerbegebiet Münchholzhausen Nord 2. BA
 - o Baugebiet Schattenlänge 2. BA
 - o Wohnbaugebiet 3. BA Blankenfeld
- Prognosefall B: Berücksichtigung <u>aller</u> Nutzungsänderungen

Nachfolgend werden das methodische Vorgehen und die ausführlichen Ergebnisse der Untersuchung erläutert.

/1/ HEINZ + FEIER GmbH: Gewerbegebiet Münchholzhausen Nord, Verkehrsuntersuchung, Entwurf vom Januar 2018.

2. UNTERSUCHUNGSGEBIET UND VERKEHRSBELASTUNGEN IM BESTAND

Das aktuelle Verkehrsgeschehen wurde am 19.09.2017 und 20.09.207 von Kreitmeier Konzept an folgenden Zählstellen erhoben /2/:

- Frankfurter Straße / Spilburgstraße / Hasenpfad (KP 401)
- Frankfurter Straße / L 3451 / L 3360 (KP 402)
- L 3451 / Franzenburg (KP 403)
- L 3451 / Schanzenfeldstraße (KP 404)
- L 3451 / Am Leitz-Park (KP 405)
- Frankfurter Straße / Lessingstraße (KP 406)
- Spilburgstraße / Schanzenfeldstraße / Sportparkstraße / Charlotte-Bamberg-Straße (KP 407)

Bei den Knotenpunkten 401 und 406 handelt es sich um lichtsignalgesteuerte Knotenpunkte. Die Knotenpunkte 402, 403 und 404 sind vorfahrtgeregelte Einmündungen, während die Knotenpunkte 405 und 407 als Kreisverkehre ausgebaut sind. Die Lage der Zählstellen und die Art der Knotenpunkte sind in **Abbildung 1** zusammengefasst dargestellt.

Die Verkehrsströme (inkl. Erfassung von querenden Fußgängerströmen) wurden in der Zeit von 6.00 bis 20.00 Uhr erfasst. Zur Auswertung und für die nachfolgenden Leistungsfähigkeitsberechnungen werden die Fahrzeugarten in Leichtverkehr (Kraftrad, Pkw, Transporter) und Schwerverkehr (Lkw > 3,5 t, Bus, Lastzug/Sattelzug) gruppiert.

Die Auswertung der Verkehrszählung für die Spitzenstunde am Vormittag ist in **Abbildung 2.1** und für die Spitzenstunde am Nachmittag in **Abbildung 2.2**. dokumentiert.

HEINZ + FEIER GmbH

^{/2/} Kreitmeier Konzept Verkehrsconsulting: Verkehrszählungen Wetzlar 2017, übergeben per E-Mail am 14.11.2017 und 16.11.2017.

3. ZUKÜNFTIGE VERKEHRSBELASTUNGEN

3.1 Nutzungsänderungen

Folgende Nutzungsänderungen sind für die Abschätzung des zusätzlichen Verkehrsaufkommens zu berücksichtigen:

- 3. Bauabschnitt Leitz-Park
 - Neubau eines Tagungshotels
 - o Neubau einer Werkstatt für Sonderoptik
 - Neubau eines Museums
 - Neubau von Büroflächen zur Fremdvermietung
- Neubau eines Industriebetriebes im Leitz-Park (4. Bauabschnitt)
- Umzug der Theodor-Heuss-Schule aus dem Schulzentrum in die Sportparkstraße
- Neubau des Wohngebietes Blankenfeld (2. Bauabschnitt)
- Neubau des Wohngebietes Blankenfeld (3. Bauabschnitt)
- Auszug der Volkshochschule aus der Spilburgstraße
- Gewerbegebiet Münchholzhausen Nord & Baugebiet Schattenlänge

Die Nutzungsänderungen sind in **Abbildung 1** zusammengefasst dargestellt.

Da nach dem Auszug der Volkshochschule eine vergleichbare Nutzung in den Räumlichkeiten zu erwarten ist, wird davon ausgegangen, dass das zukünftige nutzungsbezogene Verkehrsaufkommen sich nicht vom bisherigen Verkehrsaufkommen unterscheidet.

Nachfolgend sind die einzelnen Berechnungsschritte für die Abschätzung des Verkehrsaufkommens erläutert.

3.2 Abschätzung des Verkehrsaufkommens

3.2.1 3. Bauabschnitt Leitz-Park

Das zusätzliche Verkehrsaufkommen durch die Nutzungsänderungen im 3. Bauabschnitt des Leitz-Parks wurde in einer Verkehrsuntersuchung vom Ingenieurbüro Ohlsen abgeschätzt (/3/). Diese Daten (Abschätzung des täglichen Verkehrsaufkommens) werden plausibilisiert und übernommen.

/3/ Ingenieurbüro Ohlsen: Verkehrstechnische Bewertung Zufahrt Leitz-Park 3.BA / Am Leitzpark. Grünberg, 19.04.2016.

Neubau eines Tagungshotels

Kundenverkehr

- 500 Kunden / Tag
- 70 % MIV-Anteil
- 1,5 Pers. / Pkw Besetzungsgrad
- 2,0 Wege / Tag

Beschäftigtenverkehr

- 50 Beschäftigte
- 85 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 3,0 Wege / Tag

Lieferverkehr

• 0,5 Lkw-Fahrten / Beschäftigtem

Die aus den aufgeführten Kennwerten berechneten täglichen Kfz-Fahrten sind in **Tabelle 1** zusammengefasst. Es ist ausschließlich der auf das geplante Hotel bezogene Verkehr berücksichtigt.

	Kfz-Fahrten
Kundenverkehr	467
Beschäftigtenverkehr	116
Lieferverkehr	25
Summe (Kfz/SV)	608/25

Tabelle 1: auf das Hotel bezogene Kfz-Fahrten an Normalwerktagen

Die in **Tabelle 1** ausgewiesenen Kfz-Fahrten umfassen sowohl Fahrten des Quellverkehrs (vom Hotel) als auch des Zielverkehrs (zum Hotel).

Aus dem täglichen Kfz-Aufkommen wird der Zu- und Abfluss in den betrachteten Spitzenstunden am Vor- und Nachmittag ermittelt. Durch vorliegende Ganglinien vergleichbarer Anlagen aus /4/ werden für die verschiedenen

^{/4/} Dr.-Ing. Dietmar Bosserhoff; Programm Ver_Bau: Abschätzung des Verkehrs-aufkommens durch Vorhaben der Bauleitplanung; Gustavsburg, 2016.

Nutzergruppen die Spitzenstundenanteile abgeleitet. Der hohe Anteil des Zuflusses beim Kundenverkehr resultiert aus den stattfindenden Tagungen im Hotel. Bei den Beschäftigten wird der Schichtbetrieb bei der Festlegung der Anteile im Zu- und Abfluss berücksichtigt. Die zugrunde gelegten Anteile am Quell- bzw. Zielverkehr sind getrennt für die einzelnen Nutzergruppen in **Tabelle 2** zusammengestellt.

Cuitzanatunda	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Kundenverkehr	25 %	5 %	7 %	25 %
Beschäftigtenverkehr	20 %	5 %	5 %	25 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 2: Anteile der Spitzenstunden des Hotels am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Das mit Hilfe der Spitzenstundenanteile berechnete Verkehrsaufkommen in den Spitzenstunden ist in **Tabelle 3** zusammengefasst.

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v ili Spitzeristulide	Zufluss	Abfluss	Zufluss	Abfluss
Kundenverkehr	58	12	16	58
Beschäftigtenverkehr	12	3	3	14
Lieferverkehr	2	2	2	2
Summe (Kfz/SV)	72/2	17/2	21/2	74/2

Tabelle 3: Kfz-Aufkommen des Hotels in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

Neubau einer Werkstatt für Sonderoptik

Beschäftigtenverkehr

- 80 Beschäftigte
- 95 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 3,0 Wege / Tag

Besucherverkehr

• 0,2 Besucherfahrten / Beschäftigtem

Lieferverkehr

• 0,2 Lkw-Fahrten / Beschäftigtem

	Kfz-Fahrten
Beschäftigtenverkehr	207
Besucherverkehr	16
Lieferverkehr	16
Summe (Kfz/SV)	239/16

Tabelle 4: auf die Werkstatt bezogene Kfz-Fahrten an Normalwerktagen

Spitzanatunda	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	30 %	2 %	5 %	25 %
Besucherverkehr	7 %	5 %	5 %	10 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 5: Anteile der Spitzenstunden der Werkstatt am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v iii Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	31	2	5	26
Besucherverkehr	1	0	0	1
Lieferverkehr	1	1	1	1
Summe (Kfz/SV)	33/1	3/1	6/1	28/1

Tabelle 6: Kfz-Aufkommen der Werkstatt in den Spitzenstunden am Vorund Nachmittag an Normalwerktagen

Neubau eines Museums

Beschäftigtenverkehr

- 10 Beschäftigte
- 75 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 3,0 Wege / Tag

Besucherverkehr

- 50 Kunden / Tag
- 85 % MIV-Anteil
- 1,5 Pers. / Pkw Besetzungsgrad
- 2,0 Wege / Tag

Lieferverkehr

0,2 Lkw-Fahrten / Beschäftigtem

	Kfz-Fahrten
Beschäftigtenverkehr	20
Besucherverkehr	57
Lieferverkehr	10
Summe (Kfz/SV)	87/10

Tabelle 7: auf das Museum bezogene Kfz-Fahrten an Normalwerktagen

Cuitzanatunda	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	15 %	5 %	5 %	30 %
Besucherverkehr	0 %	0 %	15 %	15 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 8: Anteile der Spitzenstunden des Museums am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki2/3V III Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	2	1	1	3
Besucherverkehr	0	0	4	4
Lieferverkehr	1	1	1	1
Summe (Kfz/SV)	3/1	2/1	6/1	8/1

Tabelle 9: Kfz-Aufkommen des Museums in den Spitzenstunden am Vorund Nachmittag an Normalwerktagen

Neubau von Büroflächen im Leitz-Park

Beschäftigtenverkehr

- 3000 m² BGF
- 30 m² BGF / Beschäftigter
- 90 % Anwesenheit
- 80 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 2,5 Wege / Tag

Besucherverkehr

• 0,4 Besucherfahrten / Beschäftigtem

Lieferverkehr

0,2 Lkw-Fahrten / Beschäftigtem

	Kfz-Fahrten
Beschäftigtenverkehr	164
Besucherverkehr	40
Lieferverkehr	20
Summe (Kfz/SV)	224/20

Tabelle 10: auf die Büronutzung bezogene Kfz-Fahrten an Normalwerktagen

Cuit-matum da	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	30 %	2 %	5 %	25 %
Besucherverkehr	7 %	5 %	5 %	10 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 11: Anteile der Spitzenstunden der Büronutzung am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v iii Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	25	2	4	20
Besucherverkehr	1	1	1	2
Lieferverkehr	1	1	1	1
Summe (Kfz/SV)	27/1	4/1	6/1	23/1

Tabelle 12: Kfz-Aufkommen der Büronutzung in den Spitzenstunden am Vorund Nachmittag an Normalwerktagen

3.2.2 Neubau eines Industriebetriebes im Leitz-Park (4. Bauabschnitt)

Für den Neubau des Industriebetriebes (4. BA) wurde seitens der Stadt Wetzlar die Beschäftigtenzahl von 150 übermittelt und dieser als Basiswert

herangezogen. Die übrigen Daten orientieren sich an den branchenüblichen Basiskenngrößen /4/.

Kunden

entfällt

Beschäftigtenverkehr

- 150 Beschäftigte
- 90 % Anwesenheit
- 80 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 2,2 Wege / Tag

Lieferverkehr

• 0,2 Lkw-Fahrten / Beschäftigtem

	Kfz-Fahrten
Beschäftigtenverkehr	216
Lieferverkehr	30
Summe (Kfz/SV)	246/30

Tabelle 13: auf den Industriebetrieb bezogene Kfz-Fahrten an Normalwerktagen

Cuit-matum da	Vormittag		Nachmittag	
Spitzenstunde	Zufluss Abfluss		Zufluss	Abfluss
Beschäftigtenverkehr	35 %	2 %	4 %	25 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 14: Anteile der Spitzenstunden des Industriebetriebes am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v iii Spitzeristuride	Zufluss	Abfluss	Zufluss	Abfluss
Beschäftigtenverkehr	38	2	4	27
Lieferverkehr	2	2	2	2
Summe (Kfz/SV)	40/2	4/2	6/2	29/2

Tabelle 15: Kfz-Aufkommen des Industriebetriebes in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

3.2.3 Umzug der Theodor-Heuss-Schule aus dem Schulzentrum (Frankfurter Straße) in die Sportparkstraße

Die Grundlage für die Abschätzung des Verkehrsaufkommens der Theodor-Heuss-Schule bilden Informationen, die vom Lahn-Dill-Kreis sowie von der Theodor-Heuss-Schule zur Verfügung gestellt wurden (/5/).

Schülerverkehr

- 1760 Schüler
- 95 % Anwesenheit
- 70 % Anteil > 18 Jahre
- 40 % MIV-Anteil
- 1,9 Pers. / Pkw Besetzungsgrad
- 2,0 Wege / Tag

Beschäftigtenverkehr

- 150 Beschäftigte
- 90 % Anwesenheit
- 80 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad
- 2,1 Wege / Tag

Lieferverkehr

• 0,01 Lkw-Fahrten / Beschäftigtem

^{/5/} Informationen zu Art und Maß der Nutzung, Auswertung einer Mobilitätsbefragung; übergeben per E-Mail am 12.12.2017.

	Kfz-Fahrten
Schülerverkehr	493
Beschäftigtenverkehr	206
Lieferverkehr	18
Summe (Kfz/SV)	717/18

Tabelle 16: auf die Theodor-Heuss-Schule bezogene Kfz-Fahrten an Normalwerktagen

Cuitanatunda	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Schülerverkehr	74 %	1 %	1 %	15 %
Beschäftigtenverkehr	74 %	1 %	1 %	25 %
Lieferverkehr	12 %	12 %	12 %	12 %

Tabelle 17: Anteile der Spitzenstunden der Theodor-Heuss-Schule am Vorund Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v iii Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Schülerverkehr	182	2	2	37
Beschäftigtenverkehr	76	1	1	26
Lieferverkehr	1	1	1	1
Summe (Kfz/SV)	259/1	4/1	4/1	64/1

Tabelle 18: Kfz-Aufkommen der Theodor-Heuss-Schule in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

Das Gebäude, in dem sich derzeit noch die Theodor-Heuss-Schule befindet, wird nach dem Umzug abgebrochen. Ein Neubau auf dem Gelände ist jedoch nicht auszuschließen. Das durch die Theodor-Heuss-Schule produzierte

Verkehrsaufkommen ist aufgrund der hohen Spitzenstundenanteile sehr hoch. Die Wahrscheinlichkeit, dass die mögliche neue Nutzung ein ähnlich hohes Verkehrsaufkommen erzeugt, wird als gering eingeschätzt. Aus diesem Grund wird zur Berücksichtigung einer eventuellen Nachfolgenutzung 50 % des abgeschätzten Verkehrsaufkommens der Theodor-Heuss-Schule von den umliegenden Verkehrsbelastungen abgezogen.

3.2.4 Neubau der Wohnbaugebiete Blankenfeld 2. BA und 3. BA

Zur Abschätzung der Einwohnerzahl der Wohnbaugebiete Blankenfeld 2. BA und 3. BA wurde die Einwohnerdichte des benachbarten 1. Bauabschnittes von der Stadt Wetzlar übermittelt, diese auf die Flächen des 2. und 3. Bauabschnittes übertragen und die daraus resultierenden Einwohnerwerte als Basiswert herangezogen. Die übrigen Daten orientieren sich an den branchenüblichen Basiskenngrößen /4/.

Einwohnerverkehr

- 3,9 ha (2. Bauabschnitt)
- 43,1 ha (3. Bauabschnitt)
- 41,3 Einwohner / ha
- 85 % heimgebundene Wege
- 55 % MIV-Anteil
- 1,3 Pers. / Pkw Besetzungsgrad
- 3,7 Wege / Tag

Besucherverkehr

- 0,05 Besucherwege / Einwohnerweg
- 80 % MIV-Anteil
- 1,1 Pers. / Pkw Besetzungsgrad

Lieferverkehr

0,05 Lkw-Fahrten / Einwohner

	Kfz-Fahrten 2. BA	Kfz-Fahrten 3. BA
Einwohnerverkehr	214	2.368
Besucherverkehr	17	192
Lieferverkehr	8	89
Summe (Kfz/SV)	228/8	2.526/89

Tabelle 19: auf die Wohnbaugebiete Blankenfeld (2. und 3. BA) bezogene Kfz-Fahrten an Normalwerktagen

Cnit-onetunde	Vormittag		Nachmittag	
Spitzenstunde	Zufluss	Abfluss	Zufluss	Abfluss
Einwohnerverkehr	2 %	14 %	14 %	6 %
Besucherverkehr	3 %	3 %	6 %	5 %
Lieferverkehr	8 %	5 %	7 %	9 %

Tabelle 20: Anteile der Spitzenstunden der Wohnbaugebiete Blankenfeld (2. und 3. BA) am Vor- und Nachmittag am Kfz-Aufkommen im Quell- bzw. Zielverkehr

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki2/3V III Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Einwohnerverkehr	2	15	15	6
Besucherverkehr	0	0	1	1
Lieferverkehr	0	0	0	0
Summe (Kfz/SV)	2/0	15/0	16/0	7/0

Tabelle 21: Kfz-Aufkommen des Wohnbaugebietes Blankenfeld **2. BA** in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

Kfz/SV in Spitzenstunde	Vormittag		Nachmittag	
Ki23v iii Spitzeristunde	Zufluss	Abfluss	Zufluss	Abfluss
Einwohnerverkehr	24	166	166	71
Besucherverkehr	2	2	5	4
Lieferverkehr	4	2	3	4
Summe (Kfz/SV)	30/4	170/2	173/3	77/4

Tabelle 22: Kfz-Aufkommen des Wohnbaugebietes Blankenfeld **3. BA** in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

3.2.5 Gewerbegebiet Münchholzhausen Nord und Baugebiet Schattenlänge

Aus /1/ wurde für das Gewerbegebiet Münchholzhausen Nord, sowie das Baugebiet Schattenlänge folgendes zusätzliches Verkehrsaufkommen auf dem Abschnitt der L 3451 zwischen Knotenpunkt 405 und Anschlussstelle BAB 45 übernommen.

Kfz/SV in Spitzenstunde	Zufluss: Fahrtrichtung West	Abfluss: Fahrtrichtung Ost
Vormittagsspitze	159/14	449/23
Nachmittagsspitze	328/20	208/15

Tabelle 23: Kfz-Aufkommen des Gewerbegebietes Münchholzhausen Nord und des Baugebietes Schattenlänge in den Spitzenstunden am Vor- und Nachmittag an Normalwerktagen

3.3 Räumliche Verteilung des prognostizierten Verkehrsaufkommens

Das auf die Nutzungsänderungen bezogene Verkehrsaufkommen wird auf das umliegende Straßennetz verteilt und auf die erhobene Grundbelastung (vgl. Kapitel 2) aufgeschlagen. Die Anbindung der geplanten Nutzungen erfolgt über das bestehende Verkehrswegenetz. Für das Wohnbaugebiet Blankenfeld 3. BA wird die Errichtung einer vierten Zufahrt an der östlichen Seite des Kreisverkehrs zum Leitz-Park (Knotenpunkt 405) angenommen.

Das gesamte Untersuchungsgebiet kann grundsätzlich aus vier Zufahrtsrichtungen erreicht werden:

- Frankfurter Straße (L 3451) aus/in Richtung Innenstadt
- L 3451 aus/in Richtung Dutenhofen / BAB 45
- Frankfurter Straße (L 3360) aus/in Richtung Rechtenbach
- Lessingstraße aus/in Richtung Sturzkopf

Einzug der Theodor-Heuss-Schule in die Sportparkstraße

Zur Verteilung des zusätzlichen Verkehrsaufkommens auf die vier Zufahrtsrichtungen wird eine Statistik zur Herkunftsverteilung der Schüler der Theodor-Heuss-Schule (/6/) ausgewertet. Hierzu werden die Wegebeziehungen aus den entsprechenden Herkunftsorten zum Zielort auf die vier Zufahrtsrichtungen des Untersuchungsgebietes aggregiert und somit ein Verteilungsschlüssel erstellt.

Die Netzverteilung für das Verkehrsaufkommen durch den Einzug der Theodor-Heuss-Schule in die Sportparkstraße ist in **Tabelle 24** dargestellt.

Aus / In Richtung	
Frankfurter Str. (L 3451) - Innenstadt WZ	55 %
L 3451 - Dutenhofen / BAB 45	36 %
davon über die Sportparkstraßedavon über die Schanzenfeldstraße	31 % 5 %
Frankfurter Str. (L 3360) - Rechtenbach	4,5 %
Lessingstr Sturzkopf	4,5 %

Tabelle 24: Verteilungsschlüssel für das Verkehrsaufkommen durch die Theodor-Heuss-Schule

Auszug der Theodor-Heuss-Schule aus dem Schulzentrum

Unter Berücksichtigung der gleichen Parameter, wie für den Einzug der Schule in die Sportparkstraße, wird das reduzierte Verkehrsaufkommen durch den Wegfall der Schule auf die vier Zufahrtsrichtungen des Untersuchungs-

^{/6/} Herkunftsverteilung der Schüler der Theodor-Heuss-Schule, Wetzlar, übergeben per E-Mail am 27.10.2017

gebietes aggregiert. Zusätzlich hierzu wird davon ausgegangen, dass derzeit einige der Schüler im umliegenden Bereich der Spilburg und im Wohngebiet Blankenfeld parken und dadurch auch an den Knotenpunkten 401, 403 und 404 in die Nebenrichtung einbiegen bzw. aus der Nebenrichtung abbiegen. Der Wegfall dieser Wegebeziehungen wird im Prognosefall entsprechend berücksichtigt.

Die Netzverteilung für das Verkehrsaufkommen durch den Auszug der Theodor-Heuss-Schule aus dem Schulzentrum ist in **Tabelle 25** dargestellt.

Aus / In Richtung	
Frankfurter Str. (L 3451) - Innenstadt WZ	55 %
L 3451 - Dutenhofen / BAB 45	36 %
Frankfurter Str. (L 3360) - Rechtenbach	4,5 %
Lessingstr Sturzkopf	4,5 %

Tabelle 25: Verteilungsschlüssel für das Verkehrsaufkommen durch den Auszug der Theodor-Heuss-Schule aus dem Schulzentrum

Baugebiet Blankenfeld 2. Bauabschnitt

Für die Nutzung des 2. BA Blankenfeld wird die Annahme getroffen, dass das Gebiet über den Knotenpunkt L 3451 / Franzenburg (KP 403), sowie die ebenfalls erhobenen Knotenpunkte L 3360 / Christian-Rübsamen-Straße und L 3360 / Unter dem Nussbaum angebunden wird. Entsprechend den Verkehrsbelastungen im Bestand wird knotenpunktbezogen anteilig die Frequentierung der Zu- bzw. Ausfahrten in das bzw. aus dem Gebiet ermittelt. Aus den Richtungsanteilen der nachfolgenden Knotenpunkte wird ein Verteilungsschlüssel auf die vier Zufahrtsrichtungen aggregiert.

Im nachfolgenden Verteilungsschlüssel wird sowohl zwischen Quell- und Zielverkehr, als auch zwischen Vormittags- und Nachmittagsspitze differenziert. Der Grund dafür liegt in der jeweils für die verschiedenen Belastungszeiträume getrennten Betrachtung der Zu- und Ausfahrten der Knotenpunkte.

Die untenstehenden Summen ergeben deshalb nicht 100 %, weil Anteile des erzeugten Verkehrsaufkommens über den außerhalb des Untersuchungsgebietes liegenden Knotenpunkt L 3360 / Unter dem Nußbaum abfließen. Die Netzverteilung ist in **Tabelle 26** dargestellt.

Aus / In Richtung	Vormittagsspitze		Nachmittagsspitze	
	Quell- verkehr	Ziel- verkehr	Quell- verkehr	Ziel- verkehr
Frankfurter Str. (L 3451) - Innenstadt WZ	26 %	24 %	34 %	32 %
L 3451 - Dutenhofen / BAB 45	45 %	49 %	37 %	40 %
Frankfurter Str. (L 3360) - Rechtenbach	3 %	7 %	3 %	10 %
Lessingstr Sturzkopf	8 %	6 %	14 %	7 %

Tabelle 26: Verteilungsschlüssel für das Verkehrsaufkommen durch die Baugebiete Blankenfeld 2. Bauabschnitt

Die Unterschiede zwischen Quell- und Zielverkehr ergeben sich aus den Anteilen der bestehenden Verkehrsbelastungen sowie der Annahme, dass die Kfz-Führer Knotenpunktströme mit langen Wartezeiten meiden. So ist beispielsweise anzunehmen, dass einige Kfz-Führer derzeit vom bereits bestehenden Wohngebiet Blankenfeld (1. BA) im Quellverkehr aufgrund zweier Linkseinbiege-Beziehungen nicht die Knotenpunkte 403 und 402 in Richtung Südosten passieren, sondern die "Schleichwege" über die Straßen Wiesenaue, Unter dem Nußbaum oder Unter dem Ahorn bevorzugen. Im Zielverkehr liegen im Zuge der Streckenführung an den Knotenpunkten 402 und 403 jedoch zwei Rechtsabbiege-Beziehungen, an denen derzeit mit keinen Wartezeiten zu rechnen ist, vor.

Baugebiet Blankenfeld 3. Bauabschnitt

Für die Nutzung des 3. BA Blankenfeld werden aufgrund der gleichen Nutzung die Zufluss-Anteile der vier Zufahrtsrichtungen vom 2. BA Blankenfeld übernommen. Ausnahme bildet die Zufahrtsrichtung Frankfurter Straße (L 3360). Hier werden aufgrund der im Vergleich zum 2. BA Blankenfeld größeren Wegstrecke die "Schleichwege" nicht berücksichtigt. Es wird angenommen, dass aus dem Wohngebiet sämtliche Fahrten in Richtung Rechtenbach über die Landesstraßen L 3451 und L 3360 erfolgen. Zusätzlich wird unter der Berücksichtigung einer vierten Zufahrt am Kreisverkehr zum Leitz-Park angenommen, dass dieser Knotenpunkt sämtliche Fahrten in Richtung BAB 45 und 90 % der übrigen Fahrten in die drei anderen Zufahrtsrichtungen aufnimmt. Hier wird analog zum 2. BA Blankenfeld die

Zufahrt über den Knotenpunkt 403 als "Schleichweg" angesetzt. Die Netzverteilung für das Verkehrsaufkommen durch den 3. BA Blankenfeld ist in **Tabelle 27** dargestellt.

Aus / In Richtung	Vormittagsspitze		Nachmittagsspitze	
	Quell- verkehr	Ziel- verkehr	Quell- verkehr	Ziel- verkehr
Frankfurter Str. (L 3451) - Innenstadt WZ	26 %	24 %	34 %	32 %
L 3451 - Dutenhofen / BAB 45	45 %	49 %	37 %	40 %
Frankfurter Str. (L 3360) - Rechtenbach	21 %	21 %	15 %	21 %
Lessingstr Sturzkopf	8 %	6 %	14 %	7 %

Tabelle 27: Verteilungsschlüssel für das Verkehrsaufkommen durch die Baugebiete Blankenfeld 3. Bauabschnitt

Hotel, Museum, Werkstatt für Sonderoptik, Büroflächen im Leitz-Park (3. Bauabschnitt) und Industriebetrieb im Leitz-Park (4. Bauabschnitt)

Die Nutzungen des 3. BA Leitz-Park werden über die Straße Am Leitz-Park angebunden. Zur Erschließung des Industriebetriebes im 4. BA Leitz-Park wird die Anbindung über die Straße Auf der Plank angenommen. Es werden analog zum Verfahren des 2. BA Blankenfeld die räumliche Verteilung anhand der bestehenden Quell- und Zielverkehre aus bzw. in den Bereich der Spilburg anteilig auf die vier Zufahrtsrichtungen aggregiert. Hierzu werden die Knotenpunkte Frankfurter Straße / Spilburgstraße (KP 401), Schanzenfeldstraße (KP 404), L 3451 / Am Leitz-Park (KP 405), sowie der ebenfalls erhobene Knotenpunkt Frankfurter Straße / Johann-Sebastian-Bach-Straße betrachtet. Innerhalb des Untersuchungsgebietes findet eine differenzierte Verteilung der Verkehrsströme, abhängig nach Lage der Zufahrt und der knotenpunktbezogenen bestehenden Verkehrsbelastungen statt. Die Netzverteilung für diese Nutzungen ist in **Tabelle 28** dargestellt.

Aus / In Richtung	Vormittagsspitze		Nachmittagsspitze	
	Quell- verkehr	Ziel- verkehr	Quell- verkehr	Ziel- verkehr
Frankfurter Str. (L 3451) - Innenstadt WZ	36 %	37 %	36 %	43 %
L 3451 - Dutenhofen / BAB 45	27 %	41 %	42 %	30 %
Frankfurter Str. (L 3360) - Rechtenbach	25 %	13 %	15 %	20 %
Lessingstr Sturzkopf	12 %	9 %	7 %	7 %

Tabelle 28: Verteilungsschlüssel für das Verkehrsaufkommen durch den Industriebetrieb im Leitz-Park (4. Bauabschnitt)

Lieferverkehr für die Nutzungen des 3. Bauabschnittes Leitz-Park

Die Anlieferung für die Nutzungen des 3. BA Leitz-Park erfolgt über eine Zufahrt an der L 3451 zwischen den Knotenpunkten 404 und 405. Aufgrund fehlender Datenbasis und der geringeren Belastungen des Schwerverkehrs wird eine vereinfachte räumliche Verteilung auf die vier Zufahrtsrichtungen angenommen, die sich an den Richtungsanteilen der übrigen Nutzungen orientiert. Des Weiteren wird angenommen, dass der Schwerverkehr ausschließlich die Hauptstraßen und keine "Schleichwege" durch die Erschließungsstraßen nutzt. Die Netzverteilung ist in **Tabelle 29** dargestellt.

Aus / In Richtung	
Frankfurter Str. (L 3451) - Innenstadt WZ	40 %
L 3451 - Dutenhofen / BAB 45	40 %
Frankfurter Str. (L 3360) - Rechtenbach	15 %
Lessingstr Sturzkopf	5 %

Tabelle 29: Verteilungsschlüssel für das Lieferantenaufkommens des 3. Bauabschnittes Leitz-Park

Gewerbegebiet Münchholzhausen Nord & Baugebiet Schattenlänge

Das zusätzliche Verkehrsaufkommen wird anhand der Verkehrsbelastungen im Bestand anteilig auf das Straßennetz im Untersuchungsgebiet verteilt.

3.4 Prognostizierte Belastungszustände

Zusätzlich zum prognostizierten Verkehrsaufkommen der verschiedenen Nutzungen wird eine allgemeine Verkehrszunahme für alle Verkehrsströme berücksichtigt. Ein Vergleich der Verkehrsmengenkarten 2010 und 2015 für die Zählstelle L 3451 – Anschluss L 3360 ergibt einen Zuwachs des Kfz-Verkehrs um ca. 3,6 %. Zur Sicherheit z.B. gegenüber Nutzungsänderungen außerhalb des Untersuchungsgebietes wird eine allgemeine Zunahme des Verkehrsaufkommens um 5 % angenommen.

Die Prognosebelastungen ergeben sich aus der Addition der bestehenden Verkehrsbelastungen, dem pauschalen Aufschlag um 5 % und dem abgeschätzten zusätzlichen Verkehrsaufkommen.

Wie in Kap. 1 erwähnt, werden für die nachfolgenden Leistungsfähigkeitsbetrachtungen die zwei verschiedenen Belastungsszenarien **Prognosefall A** und **Prognosefall B** untersucht.

Die aus den Berechnungen resultierenden Spitzenstundenbelastungen sind für den <u>Prognosefall A</u> am Vormittag in **Abbildung 3.1** und am Nachmittag in **Abbildung 3.2** dargestellt.

Für den <u>Prognosefall B</u> sind die Spitzenstundenbelastungen am Vormittag in **Abbildung 4.1** und am Nachmittag in **Abbildung 4.2** dargestellt.

Tabelle 30 stellt die Zunahmen der knotenpunktbezogenen Verkehrsbelastungen, abhängig des Prognosefalls dar.

Knoten- punkt	Relative Zunahme der Verkehrsbelastungen aller Ströme im Prognosefall A		Relative Zunahme der Verkehrsbelastungen aller Ströme im Prognosefall B	
	Vormittag Nachmittag		Vormittag	Nachmittag
KP 401	+ 17 %	+ 17 %	+ 26 %	+ 27 %
KP 402	+ 12 %	+ 16 %	+ 23 %	+ 29 %
KP 403	+ 26 %	+ 28 %	+ 50 %	+ 55 %
KP 404	+33 %	+ 30 %	+ 52 %	+ 56 %
KP 405	+34 %	+ 34 %	+ 66 %	+ 66 %
KP 406	+9 %	+ 14 %	+ 17 %	+ 22 %
KP 407	+47 %	+ 29 %	+ 61 %	+ 41 %

Tabelle 30: Anteile des zusätzlichen Verkehrsaufkommens je Knotenpunkt durch die Prognosefälle A und B im Vergleich zum Bestand

4. LEISTUNGSFÄHIGKEITSBETRACHTUNGEN

4.1 Methodik

Die Beurteilung der Verkehrsverhältnisse erfolgt nach dem Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS 2015) /7/ und wird ausschließlich für den motorisierten Individualverkehr (MIV) durchgeführt. Die Berechnungen werden für die Stundenbelastungen in den Spitzenverkehrszeiten am Vor- und Nachmittag an Normalwerktagen vorgenommen.

Außerhalb der Spitzenverkehrszeiten sind aufgrund der geringeren Belastungen niedrigere mittlere Wartezeiten und geringere Auslastungen zu erwarten. Daher kann zu diesen Zeiten in der Regel von einer besseren Qualität des Verkehrsablaufs ausgegangen werden.

Die Verkehrsqualität wird in Abhängigkeit von der mittleren Wartezeit der einzelnen Kraftfahrzeugströme definiert. Maßgebend für die Gesamtbeurteilung eines Knotenpunktes ist die schlechteste Qualität aller beteiligten Verkehrsströme bzw. Fahrstreifen.

Die einzelnen Qualitätsstufen mit Beschreibung der verkehrlichen Verhältnisse für Knotenpunkte mit Lichtsignalanlagen sind in **Tabelle 31** und für vorfahrtgeregelte Knotenpunkte, sowie Kreisverkehre in **Tabelle 32** angegeben.

Grundlage der Berechnungen bilden die in den betrachteten Spitzenstunden ermittelten Belastungen. Für die Leistungsfähigkeitsberechnung werden die Belastungen der einzelnen Fahrstreifen benötigt. Diese ergeben sich unmittelbar aus den Fahrbeziehungen. Für die Berechnungen nach HBS 2015 werden die Verkehrsbelastungen in Leichtverkehr (Kraftrad, Pkw und Leichttransporter) und Schwerverkehr (Lkw, Bus und Sattel- bzw. Lastzug) unterteilt.

Die Berechnung der Aufstelllängen erfolgt mit einer Sicherheit gegen Überstauen von 95%. Die so ermittelten Werte werden in der Regel als erforderliche Aufstelllänge angesetzt.

HEINZ + FEIER GmbH

^{/7/} Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV), Kommission Bemessung von Straßenverkehrsanlagen: Handbuch für die Bemessung von Straßenverkehrsanlagen, HBS, Teil S Stadtstraßen; Köln, 2015.

Knotenpunkte mit Lichtsignalanlage

Die Berechnungsgrundlage für lichtsignalgeregelte Knotenpunkte bilden bei bestehenden Lichtsignalregelungen die derzeit geschalteten Signalprogramme. Bei Änderungen, z.B. an den Fahrbeziehungen, oder neu zu signalisierenden Knotenpunkten werden konzeptionell entwickelte Phasenabläufe und Signalzeitenpläne zugrunde gelegt, die die bestehenden signaltechnischen Randbedingungen berücksichtigen. Neue Zwischenzeiten werden abgeschätzt.

Tabelle 31 zeigt die Grenzwerte der mittleren Wartezeit im Kfz-Verkehr für die Qualitätsstufen an Knotenpunkten mit Lichtsignalanlage.

Qualitäts- stufe	Mittlere Wartezeit	Definition
Α	≤ 20 s	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr kurz.
В	≤ 35 s	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteil- nehmer kurz. Alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nachfolgenden Freigabezeit weiterfahren.
С	≤ 50 s	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer spürbar. Nahezu alle während der Sperrzeit auf dem betrachteten Fahrstreifen ankommenden Kraftfahrzeuge können in der nachfolgenden Freigabezeit weiterfahren. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit nur gelegentlich ein Rückstau auf.
D	≤ 70 s	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteil- nehmer beträchtlich. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit häufig ein Rückstau auf.
E	> 70 s	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer lang. Auf dem betrachteten Fahrstreifen tritt im Kfz-Verkehr am Ende der Freigabezeit in den meisten Umläufen ein Rückstau auf.
F	$(q_i > C_i)$	Die Wartezeiten sind für die jeweils betroffenen Verkehrsteilnehmer sehr lang. Auf dem betrachteten Fahrstreifen wird die Kapazität im Kfz-Verkehr überschritten. Der Rückstau wächst stetig. Die Kraftfahrzeuge müssen bis zur Weiterfahrt mehrfach vorrücken.

Tabelle 31: Grenzwerte der mittleren Wartezeit im Kfz-Verkehr für die Qualitätsstufen an Knotenpunkten mit Lichtsignalanlage (nach HBS 2015)

Knotenpunkte ohne Lichtsignalanlage

Knotenpunkte mit Vorfahrtbeschilderung und Kreisverkehre, die eine mittlere Wartezeit des wartepflichtigen Stroms von bis zu 45 Sekunden aufweisen, sind als ausreichend leistungsfähig anzusehen. Die einzelnen Qualitätsstufen sind in **Tabelle 32** angegeben.

Qualitäts- stufe	Mittlere Wartezeit	Definition
Α	≤ 10 s	Die Mehrzahl der Verkehrsteilnehmer kann nahezu ungehindert den Knotenpunkt passieren. Die Wartezeiten sind sehr gering.
В	≤ 20 s	Die Abflussmöglichkeiten der wartepflichtigen Verkehrsströme werden vom bevorrechtigten Verkehr beeinflusst. Die dabei entstehenden Wartezeiten sind gering.
С	≤ 30 s	Die Verkehrsteilnehmer in den Nebenströmen müssen auf eine merkbare Anzahl von bevorrechtigten Verkehrsteilnehmern achten. Die Wartezeiten sind spürbar. Es kommt zur Bildung von Stau, der jedoch weder hinsichtlich seiner räumlichen Ausdehnung noch bezüglich der zeitlichen Dauer eine starke Beeinträchtigung darstellt.
D	≤ 45 s	Die Mehrzahl der Verkehrsteilnehmer in den Nebenströmen muss Haltevorgänge, verbunden mit deutlichen Zeitverlusten, hinnehmen. Für einzelne Verkehrsteilnehmer können die Wartezeiten hohe Werte annehmen. Auch wenn sich vorübergehend ein merklicher Stau in einem Nebenstrom ergeben hat, bildet sich dieser wieder zurück. Der Verkehrszustand ist noch stabil.
E	> 45 s	Es bilden sich Staus, die sich bei der vorhandenen Belastung nicht mehr abbauen. Die Wartezeiten nehmen sehr große und dabei stark streuende Werte an. Geringfügige Verschlechterungen der Einflussgrößen können zum Verkehrszusammenbruch (d.h. ständig zunehmende Staulänge) führen. Die Kapazität wird erreicht.
F	- (q _i > C _i)	Die Anzahl der Fahrzeuge, die in einem Verkehrsstrom dem Knotenpunkt je Zeiteinheit zufließen, ist über eine Stunde größer als die Kapazität für diesen Verkehrsstrom. Es bilden sich lange, ständig wachsende Staus mit besonders hohen Wartezeiten. Diese Situation löst sich erst nach einer deutlichen Abnahme der Verkehrsstärken im zufließenden Verkehr wieder auf. Der Knotenpunkt ist überlastet.

Tabelle 32: Qualitätsstufen an Knotenpunkten mit Regelung durch Vorfahrtbeschilderung und Fahrverkehr auf der Fahrbahn (nach HBS 2015)

4.2 Ergebnisse

4.2.1 Frankfurter Straße / Spilburgstraße / Hasenpfad (KP 401)

Der Knotenpunkt 401 weist eine Lichtsignalsteuerung mit Verkehrsabhängigkeit auf. Als Basisprogramm gilt für alle Betriebszeiten das Signalprogramm SP 1 mit entsprechenden Modifikationen für die verkehrsabhängige Steuerung. Eine exakte HBS-Berechnung ist aufgrund der umfassenden verkehrsabhängigen Steuerung nicht möglich. Es wurde daher ein Fall mit Anforderung aller IV-Ströme sowie mit Anmeldung einer eigenen ÖV-Phase und ein Fall mit Anforderung aller IV-Ströme, jedoch ohne ÖV-Anmeldung betrachtet. Beide Ergebnisse sind in den Anlagen dargestellt.

Bestand:

In der Vormittagsspitze ist der Linksabbieger aus Richtung Wetzlar in die Spilburgstraße im Bereich zwischen QSV D und QSV E einzustufen und ist somit für den Knotenpunkt maßgebend. Die Ströme der Hauptrichtung (Frankfurter Straße) liegen im Bereich von QSV B bis QSV C, die der Nebenrichtung (Spilburgstraße) zwischen QSV C und QSV D.

In der Nachmittagsspitze ist der Linksabbieger aus Wetzlar zwischen QSV C und QSV D einzustufen. Die Hauptrichtung liegt im Bereich QSV A bis QSV B, die Nebenrichtung liegt im Grenzbereich von QSV D. Somit ist der Knotenpunkt im Bestand als leistungsfähig einzustufen.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 1.1** für die Vormittagsspitze und in **Anlage 1.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Im Prognosefall A findet durch die Nutzungsänderungen eine starke Erhöhung der Verkehrsbelastungen statt. Der Linksabbiegerstrom aus Wetzlar in die Spilburgstraße ist in der Vormittagsspitze in die QSV F einzustufen. Durch den daraus resultierenden Rückstau wirkt sich die Überlastung auch auf den stadtauswärts führenden Geradeausstrom aus, der ebenfalls überlastet ist. Nachmittags erreicht die Nebenrichtung aus der Spilburgstraße die Grenzen der Leistungsfähigkeit (QSV E-F). Der Knotenpunkt ist unter diesen Verkehrsbelastungen als nicht ausreichend leistungsfähig einzustufen.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 1.3** für die Vormittagsspitze und in **Anlage 1.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Auch im Prognosefall B ist der Knotenpunkt in der Vormittagsspitze durch den Linksabbieger in die Spilburgstraße überlastet, was sich durch den Rückstau auf den Geradeausstrom aus der gleichen Zufahrtsrichtung negativ auswirkt. Nachmittags ist die Nebenrichtung aus der Spilburgstraße überlastet. Der Knotenpunkt ist auch im Prognosefall B als nicht ausreichend leistungsfähig einzustufen und sollte verkehrstechnisch überarbeitet werden.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 1.5** für die Vormittagsspitze und in **Anlage 1.6** für die Nachmittagsspitze dargestellt.

4.2.2 Frankfurter Straße / L 3451 / L 3360 (KP 402)

Bei diesem Knotenpunkt handelt es sich um eine vorfahrtgeregelte Kreuzung, wobei der südliche Knotenpunktarm lediglich eine Einfahrt für die aus Wetzlar kommenden Rechtsabbieger in das Schulzentrum darstellt.

Neben der Betrachtung der Leistungsfähigkeiten ist hier darauf hinzuweisen, dass im unmittelbaren Knotenpunktbereich keine Einrichtungen zur Fußgängerüberquerung vorhanden sind. Die den Fußgängern zugemuteten Umwege zur sicheren Querung der Straßen L 3451 (zwischen Knotenpunkten 402 und 403) bzw. L 3360 (an der Einmündung Lessingstraße) werden häufig nicht angenommen. Die Folge ist illegales und für Fußgänger gefährliches Queren am Knotenpunkt ohne entsprechende Querungshilfe.

Bestand:

Im Bestand weist der Knotenpunkt 402 sowohl in der Vormittagsspitze als auch in der Nachmittagsspitze die QSV F auf. Maßgebend hier ist der Linkseinbiegerstrom aus der L 3451 (Strom 10, von Norden kommend). Dieser erhält ohne Signalsteuerung aufgrund der hohen Belastungen der vorfahrtberechtigten Ströme nicht genügend Zeitlücken zum Einbiegen. Der Linksabbiegerstrom aus Westen (Strom 1) weist vormittags die QSV B, nachmittags die QSV A auf.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 2.1** für die Vormittagsspitze und in **Anlage 2.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Die Zusatzbelastungen im Prognosefall A führen zu einer weiteren Überlastung des Linkseinbiegerstroms.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 2.3** für die Vormittagsspitze und in **Anlage 2.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Im Prognosefall B weist neben dem Linkseinbiegerstrom auch der wartepflichtige Linksabbieger aus Richtung Westen die QSV F auf und ist somit überlastet. Der Knotenpunkt weist unter diesen Belastungen keine genügende Leistungsfähigkeit auf.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 2.5** für die Vormittagsspitze und in **Anlage 2.6** für die Nachmittagsspitze dargestellt.

4.2.3 L 3451 / Franzenburg (KP 403)

Knotenpunkt 403 ist eine vorfahrtgeregelte Einmündung der Straße Franzenburg in die Landesstraße L 3451.

Bestand:

Die Haupt- bzw. Gegenrichtung sowie der Rechtseinbiegerstrom in die L 3451 weisen aufgrund ihrer Vorfahrtberechtigung allesamt die QSV A auf. Der Linkseinbieger aus der Franzenburg, erreicht in der Vormittagsspitze die QSV D und in der Nachmittagsspitze die QSV C. Der Knotenpunkt ist somit unter den derzeit gegebenen Belastungen als leistungsfähig einzustufen.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 3.1** für die Vormittagsspitze und in **Anlage 3.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Im Prognosefall A erhöht sich die Wartezeit für den Linkseinbieger auf 98 Sekunden (vormittags) bzw. 64 Sekunden (nachmittags). Der Knotenpunkt erreicht damit die QSV E und ist somit noch ausreichend leistungsfähig.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 3.3** für die Vormittagsspitze und in **Anlage 3.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Durch die Zusatzbelastungen im Prognosefall B ist der Knotenpunkt durch den Linkseinbieger aus der Franzenburg vormittags überlastet. Nachmittags werden die Grenzen der Leistungsfähigkeit erreicht (Übergangsbereich zwischen QSV E und F).

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 3.5** für die Vormittagsspitze und in **Anlage 3.6** für die Nachmittagsspitze dargestellt.

4.2.4 L 3451 / Schanzenfeldstraße (KP 404)

Knotenpunkt 404 ist eine vorfahrtgeregelte Einmündung der Schanzenfeldstraße in die Landesstraße L 3451.

Bestand:

Analog zum Knotenpunkt 403 weisen mit Ausnahme des Linkseinbiegers aus der Schanzenfeldstraße alle Ströme die QSV A auf. Der Linkseinbieger erreicht sowohl in der Vormittags- als auch in der Nachmittagsspitze die QSV D, welche sich im Grenzbereich zur QSV C befindet. Somit ist der Knotenpunkt unter den bestehenden Verkehrsbelastungen genügend leistungsfähig.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 4.1** für die Vormittagsspitze und in **Anlage 4.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Im Prognosefall A ist der Knotenpunkt durch den wartepflichtigen Linkseinbieger aus der Schanzenfeldstraße vor- wie nachmittags im Grenzbereich zwischen QSV E und QSV F einzuordnen.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 4.3** für die Vormittagsspitze und in **Anlage 4.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Durch die weitere Zunahme des Verkehrsaufkommens weist der Linkseinbieger aus der Schanzenfeldstraße im Prognosefall B sowohl vor- als auch nachmittags die QSV F auf. Der Knotenpunkt ist überlastet.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 4.5** für die Vormittagsspitze und in **Anlage 4.6** für die Nachmittagsspitze dargestellt.

4.2.5 L 3451 / Am Leitz-Park (KP 405)

Beim Knotenpunkt 405 handelt es sich um einen dreiarmigen Kreisverkehr mit einem Außendurchmesser von 50 Metern. Die Hauptrichtung bildet die L 3451, die Nebenrichtung die Straße Am Leitz-Park.

Bestand:

In der Vormittagsspitze ist der von Norden (L 3451) kommende Verkehrsstrom mit der QSV C und einer mittleren Wartezeit von ca. 22 Sekunden maßgebend. In der Nachmittagsspitze weist der Kreisverkehr die QSV B auf, die jedoch im Grenzbereich zur QSV A liegt (Wartezeit: ca. 10 Sekunden). Sowohl am Vor- als auch am Nachmittag erreichen die übrigen Zufahrten die QSV A. Der Knotenpunkt ist ausreichend leistungsfähig.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 5.1** für die Vormittagsspitze und in **Anlage 5.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Im Prognosefall A ist vormittags die Zufahrt L 3451 Nordost überlastet. Somit kann der Kreisverkehr in seiner derzeitigen Ausführung als nicht ausreichend leistungsfähig angesehen werden. Nachmittags stellt sich aufgrund der in der Hauptrichtung geringeren Verkehrsbelastungen die QSV C ein.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 5.3** für die Vormittagsspitze und in **Anlage 5.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Im Prognosefall B erhält der Kreisverkehr aufgrund der Anbindung des Wohngebietes 3. BA Blankenfeld eine vierte Zufahrt an der südöstlichen Seite. Durch den Anschluss einer vierten Zufahrt und dem hohen zusätzlichen

Verkehrsaufkommen ist dieser Knotenpunkt nicht mehr ausreichend leistungsfähig. Sowohl in der Vor- als auch in der Nachmittagsspitze weist der Kreisverkehr die QSV F in mehreren Zufahrten auf.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 5.5** für die Vormittagsspitze und in **Anlage 5.6** für die Nachmittagsspitze dargestellt.

4.2.6 Frankfurter Straße / Lessingstraße (KP 406)

Der Knotenpunkt 406 ist eine signalisierte Einmündung. Die Lichtsignalanlage weist eine verkehrsabhängige Steuerung auf. Die Leistungsfähigkeiten wurden anhand der Festzeitprogramme berechnet.

Bestand:

In der Vormittagsspitze weist die Nebenrichtung (Linkseinbiegerstrom) die QSV F auf. Während der Nachmittagsspitze ist die Situation weniger problematisch, da die Verkehrsbelastung des Linkseinbiegerstroms geringer ist und somit die QSV C erreicht wird. Die übrigen Ströme erreichen sowohl vor- als auch nachmittags die QSV A oder B.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 6.1** für die Vormittagsspitze und in **Anlage 6.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Die Verkehrsqualitäten im Prognosefall A unterscheiden sich nur geringfügig von denen im Bestand. Die Nebenrichtung (Linkseinbieger aus der Lessingstraße) bleibt vormittags überlastet.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 6.3** für die Vormittagsspitze und in **Anlage 6.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Aufgrund der Zunahme der Verkehrsbelastungen erhöht sich die Wartezeit für den Geradeausstrom aus Osten (L 3360) auf über 60 Sekunden (QSV D). Die bereits im Bestand überlastete Nebenrichtung ist auch im Prognosefall B vormittags mit QSV F überlastet. Nachmittags sind die Belastungen in der Nebenrichtung geringer. Die Verkehrsqualität stellt sich für den Linkseinbiegerstrom aus der Lessingstraße bei QSV C ein. Jedoch verschlechtert sich

die Hauptrichtung von QSV A/B im Bestand auf QSV C bzw. D. Zu beachten sind auch die Staulängen, die unter der bestehenden Festzeitsignalisierung in der Hauptrichtung bis nahe an den benachbarten Knotenpunkt 402 heranreichen.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 6.5** für die Vormittagsspitze und in **Anlage 6.6** für die Nachmittagsspitze dargestellt.

4.2.7 Spilburgstraße / Schanzenfeldstraße / Sportparkstraße / Charlotte-Bamberg-Straße (KP 407)

Knotenpunkt 407 ist ein vierarmiger Kreisverkehr mit einem Außendurchmesser von 30 m.

Bestand:

Im Bestand wird sowohl in der Vormittags- als auch in der Nachmittagsspitze in allen Zufahrten die QSV A erreicht.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Bestand sind für diesen Knotenpunkt in **Anlage 7.1** für die Vormittagsspitze und in **Anlage 7.2** für die Nachmittagsspitze dargestellt.

Prognosefall A:

Im Prognosefall A erhöhen sich zwar die Verkehrsbelastungen, jedoch werden sowohl in der Vormittags- als auch in der Nachmittagsspitze in allen Zufahrten die QSV A erreicht.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A sind für diesen Knotenpunkt in **Anlage 7.3** für die Vormittagsspitze und in **Anlage 7.4** für die Nachmittagsspitze dargestellt.

Prognosefall B:

Auch im Prognosefall B wird sowohl in der Vormittags- als auch in der Nachmittagsspitze in allen Zufahrten die QSV A erreicht.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall B sind für diesen Knotenpunkt in **Anlage 7.5** für die Vormittagsspitze und in **Anlage 7.6** für die Nachmittagsspitze dargestellt.

5. PLANUNGSEMPFEHLUNGEN

5.1 Frankfurter Straße / Spilburgstraße / Hasenpfad (KP 401)

Aufgrund der Überlastung des Linksabbiegerstroms in die Spilburgstraße und der langen Umlaufzeiten schlagen wir folgende Anpassung vor:

In der Spilburgstraße besteht die Möglichkeit, die Spuraufteilung zu ändern. Der Geradeausstrom würde künftig nicht mehr gemeinsam mit dem Rechtseinbieger, sondern mit dem Linkseinbieger auf einem Mischfahrstreifen geführt werden. Der Rechtseinbieger sollte neben dem Signal K4 (3-feldig, Vollscheibe) ein weiteres Signal (2-feldig: Grün, Gelb, Dunkel) erhalten. Somit kann der zukünftig stark belastete Rechtseinbiegerstrom gemeinsam mit den Signalgruppen 3 und 6 (Linksabbiegerströme im Zuge der Hauptrichtung) geführt werden. Eine neue Phaseneinteilung ist somit notwendig. Busse (Signalgruppen 41 bzw. 42) sollen sich weiterhin ihre Freigabezeit in einer eigenen Phase anfordern können.

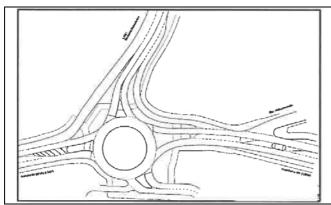
Wegen der kurzen Abstände zu den nachfolgenden Knotenpunkten 402 und 406 ist eine Koordinierung der Anlagen notwendig. Idealerweise sollte die Umlaufzeit dieser Anlagen zu den Hauptverkehrszeiten einheitlich auf 90 Sekunden festgesetzt werden. Eine verkehrsabhängige Umlaufzeit, wie sie im Bestand existiert, ermöglicht keine Koordinierung.

Für die Leistungsfähigkeitsbetrachtungen werden die Freigabezeiten unter Berücksichtigung der bestehenden Zwischenzeiten so gewählt, dass möglichst ausgeglichene Verkehrsqualitäten entstehen.

In der maßgebenden Vormittagsspitze ergeben sich nach der HBS-Betrachtung in beiden Prognosefällen in den Strömen der Nebenrichtung, sowie in der stadteinwärts führenden Hauptrichtung die Qualitätsstufen D – E. Nachmittags ergibt die Leistungsfähigkeitsbetrachtung für alle Verkehrsströme eine Verkehrsqualität von QSV C oder besser.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen für die geplante Signalisierung unter den Belastungen des Prognosefalls A sind für diesen Knotenpunkt in **Anlage 1.7** für die Vormittagsspitze und in **Anlage 1.8** für die Nachmittagsspitze dargestellt. Für die geplante Signalisierung unter den Belastungen des Prognosefalls B sind die Ergebnisse der Leistungsfähigkeitsbetrachtungen in **Anlage 1.9** für die Vormittagsspitze und in **Anlage 1.10** für die Nachmittagsspitze dargestellt.

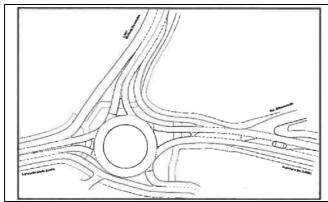
5.2 Frankfurter Straße / L 3451 / L 3360 (KP 402)


Der Knotenpunkt weist in seiner derzeitigen Form keine genügende Leistungsfähigkeit auf. Des Weiteren sind im unmittelbaren Knotenpunktbereich keine Querungshilfen für Fußgänger vorhanden. An der östlichen Zufahrt jedoch werden durch das benachbarte Schulzentrum vormittags sehr starke Fußgängerströme registriert, welche zurzeit ohne Regelung die Hauptrichtung kreuzen.

Um die große Menge an querenden Fußgängern abzumindern, ist ein Umbau der Bushaltestelle Schulzentrum geplant. Dieser sieht im Knotenpunktbereich eine für Busse freigegebene Ein- und Ausfahrt an der Frankfurter Straße vor. Pkw erreichen den Parkplatz des Schulzentrums über die bereits bestehende Einfahrt an der Lessingstraße. Die Erschließung über die Frankfurter Straße ist für Pkw nicht mehr vorgesehen.

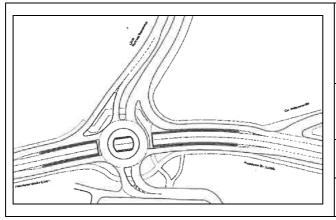
Varianten mit Kreisverkehr

Zum Knotenpunkt Frankfurter Straße / L 3451 wurde bereits im Jahr 2009 eine Verkehrsuntersuchung durch die Stadt Wetzlar durchgeführt. Darin wurden bereits die Probleme bzgl. der Leistungsfähigkeit des Knotenpunktes und den fehlenden Querungsanlagen für Fußgänger thematisiert. Es wurden zur Erarbeitung von Lösungsvorschlägen insgesamt sechs Umbauvarianten zum Kreisverkehr erarbeitet und diese auf ihre Leistungsfähigkeiten geprüft.


In der vorliegenden Untersuchung werden die sechs Kreisverkehr-Varianten unter Berücksichtigung der neu ermittelten Prognosebelastungen erneut auf ihre Leistungsfähigkeit geprüft. In den nachfolgenden **Tabellen 33 - 38** sind die Ergebnisse zusammengefasst.

Variante 1.1: Einstreifige Kreisfahrbahn mit zwei Bypässen

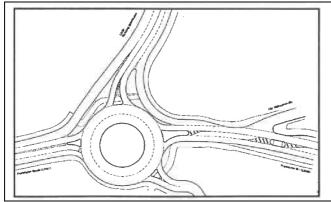
Prognose- fall	Vor- mittag	Nach- mittag				
Α	QSV F	QSV F				
В	QSV F	QSV F				


Tabelle 33: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.1 (Bild: Stadt Wetzlar: VU Knoten Franzenburg /8/)

Variante 1.2: Einstreifige Kreisfahrbahn mit drei Bypässen

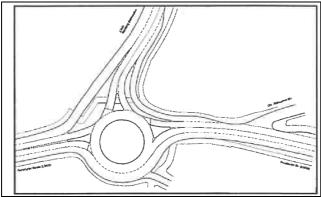
Prognose- fall	Vor- mittag	Nach- mittag
Α	QSV F	QSV F
В	QSV F	QSV F

Tabelle 34: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.2 (Bild: /8/)


Variante 1.3:

Einstreifige Kreisfahrbahn mit zwei Bypässen und niveaufreier Unterführung der HR

Prognose- fall	Vor- mittag	Nach- mittag				
A	QSV A	QSV A				
В	QSV B	QSV B				


Tabelle 35: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.3 (Bild: /8/)

^{/8/} Stadt Wetzlar: Verkehrstechnische Untersuchung – Leistungssteigernder Umbau Knoten Frankfurter Straße / Landesstraße L3451 "Knoten Franzenburg", 2009.

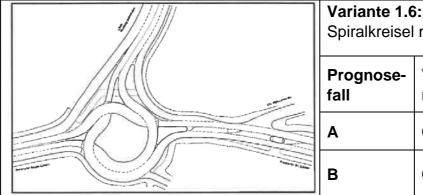

Variante 1.4: Zweistreifige Kreisfahrbahn mit zwei Bypässen Prognose-Vor-Nachfall mittag mittag QSV F QSV B Α В QSV F QSV E

Tabelle 36: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.4 (Bild: /8/)

	Variante 1.5: Teilweise zweistreifige Kreisfahrbahn mit zwei Bypässen										
	Prognose- fall	Vor- mittag	Nach- mittag								
11111	A	QSV E/F	QSV B								
	R	OSV E	OSV B								

Tabelle 37: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.5 (Bild: /8/)

	Spiralkreisel	-	pässen		
	Prognose- fall	Vor- mittag	Nach- mittag		
177	Α	QSV C/F	QSV B		

QSV E/F

Tabelle 38: Ergebnisse der Leistungsfähigkeitsbetrachtung für die Umbauvariante 1.6 (Bild: /8/)

В

Die Varianten 1.1 und 1.2 sind in jedem Belastungsszenario überlastet. In den Varianten 1.5 und 1.6 sind zur Vormittagsspitze teilweise zwei Qualitätsstufen angegeben. Die besser bewertete Qualitätsstufe gibt das Ergebnis des

QSV B

Berechnungsverfahrens wieder. In dem Berechnungsmodell wird jedoch ein unbegrenzt langer Bypass an der östlichen Zufahrt unterstellt. Tatsächlich ist in den Spitzenzeiten vormittags jedoch in der östlichen Zufahrt mit Rückstaulängen zu rechnen, die den Bypass überstauen. Somit ist die östliche Zufahrt in der Realität nicht funktionsfähig und damit überlastet.

Demnach sind die Varianten 1.4, 1.5 und 1.6 zur Spitzenstunde am Vormittag überlastet. Zudem ist durch die Gestaltung der Kreisverkehrsplätze der geplante Umbau der Bushaltestelle Schulzentrum erschwert.

Es sei zudem erwähnt, dass die Leistungsfähigkeiten aller Kreisverkehr-Varianten ohne den Einfluss von querenden Fußgängern betrachtet wurden. In der Realität ist von einer schlechteren Verkehrsqualität infolge von Behinderungen durch querende Fußgänger auszugehen.

Da nicht signalisierte Fußgängerquerungen über zwei Fahrstreifen derselben Fahrtrichtung unzulässig sind, ist die Fußgängerquerung im unmittelbaren Knotenpunktbereich erschwert. Daher werden den Fußgängern über Mittelinseln im Bereich der Christian-Rübsamen-Straße (Varianten 1.1, 1.2, 1.4 und 1.6) recht große Umwege zugemutet, was sich in der Regel negativ auf die Akzeptanz der Querungshilfen auswirkt.

Somit ist Variante 1.3 die einzige Kreisverkehr-Variante, die den Anforderungen genügt. Sie weist eine gute Verkehrsqualität auf. Die hohe Belastung auf der Frankfurter Straße stellt für das Queren von Fußgängern durch die teilplanfreie Gestaltung kein Hindernis dar. Variante 1.3 ermöglicht zudem den geplanten Umbau der Bushaltestelle Schulzentrum, wenngleich nicht alle Fahrbeziehungen (L 3360 → Schulzentrum) möglich sind.

Dieses Ergebnis deckt sich mit dem aus der Verkehrsuntersuchung von 2009.

Varianten mit Lichtsignalregelung

Neben der Betrachtung der sechs Kreisverkehr-Varianten werden im Folgenden zwei Varianten als lichtsignalgeregelter Knotenpunkt beschrieben. Der Umbau der Bushaltestelle Schulzentrum wurde in den nachfolgenden Varianten und den dazugehörigen Leistungsfähigkeitsbetrachtungen berücksichtigt. Es wird eine Zwischenzeit von 5 Sekunden je Phasenwechsel und eine Umlaufzeit von 90 Sekunden angenommen.

Eine Möglichkeit zur Umgestaltung gemäß Planungsvariante 1 ist in **Abbildung 5.1** dargestellt. Aus Gründen der Leistungsfähigkeit ist ein zweiter Geradeaus-Fahrstreifen aus Osten notwendig. Die Erhöhung der Anzahl der Fahrstreifen ist im vorhandenen Straßenquerschnitt durch eine Reduzierung der Fahrstreifenbreiten innerhalb des Regelmaßes nach den Richtlinien für die Anlage von Stadtstraßen (RASt 06) /9/ zu erreichen. Ein- und ausfahrende Busse zum Schulzentrum fordern sich eine Freigabezeit an. Im Zuge des Umbaus werden signalisierte Fußgängerfurten angelegt.

Die Leistungsfähigkeit dieser Umbauvariante ist für den Prognosefall A ausreichend. Im Prognosefall B stößt der Knotenpunkt in dieser Ausführungsform jedoch aufgrund der höheren Verkehrsbelastungen an seine Leistungsfähigkeitsgrenzen. Im Belastungsfall mit eigener ÖV-Phase sind mehrere Zufahrten überlastet, im Belastungsfall ohne ÖV-Phase erreicht der Knotenpunkt die Qualitätsstufe E mit recht hohen Wartezeiten.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen zur Planungsvariante 1 unter den Belastungen des Prognosefalls A sind für diesen Knotenpunkt in **Anlage 2.7** für die Vormittagsspitze und in **Anlage 2.8** für die Nachmittagsspitze dargestellt. Die Ergebnisse für die Planungsvariante 1 unter den Belastungen des Prognosefalls B sind in **Anlage 2.9** für die Vormittagsspitze und in **Anlage 2.10** für die Nachmittagsspitze dargestellt.

Eine zweite Planungsvariante ist in **Abbildung 5.2** dargestellt. Diese stellt durch die Anordnung eines eigenen Rechtsabbiegefahrstreifens eine Erweiterung der Variante 1 dar. Variante 1 sieht noch einen Mischfahrstreifen für (Geradeaus und Rechtsabbieger) vor. Dies bedingt eine Fahrbahnaufweitung im Bereich zwischen dem betrachteten Knotenpunkt und der Einmündung zur Christian-Rübsamen-Straße.

In einem theoretischen Belastungsfall, in welchem sich zu jedem Umlauf ein Bus anmeldet und somit eine eigene Phase anfordert, stellt sich die Verkehrsqualität des Knotenpunktes in der Vormittagsspitze bei QSV E oder besser ein. Alle anderen Belastungsszenarien (Nachmittagsspitze, sowie geringere Häufigkeit der ÖV-Anmeldungen in der Vormittagsspitze) ergeben bessere Qualitätsstufen. Der Knotenpunkt ist in dieser Ausführungsform auch unter den Zusatzbelastungen des Prognosefalls B als ausreichend leistungsfähig einzustufen.

^{/9/} Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV) (Hrsg.): Richtlinien für die Anlage von Stadtstraßen (RASt 06), Köln, 2007.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen zur Planungsvariante 2 unter den Belastungen des Prognosefalls A sind für diesen Knotenpunkt in **Anlage 2.11** für die Vormittagsspitze und in **Anlage 2.12** für die Nachmittagsspitze dargestellt. Die Ergebnisse für die Planungsvariante 2 unter den Belastung des Prognosefalls B sind in **Anlage 2.13** für die Vormittagsspitze und in **Anlage 2.14** für die Nachmittagsspitze dargestellt.

5.3 L 3451 / Franzenburg (KP 403)

Aufgrund der Vorfahrtregelung ist die Nebenrichtung überlastet. Daher wird folgende Lösung vorgeschlagen:

Es wird eine Lichtsignalanlage mit verkehrsabhängiger Steuerung errichtet. Dabei sollen die Nebenrichtung sowie die Fußgängerfurt über die Hauptrichtung auf Anforderung freigegeben werden. Die Steuerung kann in zwei Phasen (Hauptrichtung, Nebenrichtung) ablaufen. Der Linksabbiegerstrom der L 3451 wird mittels Diagonalgrün im Nachlauf zeitweise gesichert geführt. Bei der Dimensionierung der Freigabezeiten sind die Stauraumlängen für den Linksabbiegerstrom bzw. für die Ströme der Nebenrichtung zu beachten.

Für die folgenden Berechnungsergebnisse werden eine Zwischenzeit von 5 Sekunden je Phasenwechsel und eine Umlaufzeit von 90 Sekunden angenommen.

Vormittags kann die Verkehrsqualität des Linkseinbiegerstroms von QSV F unter den Verkehrsbelastungen des Prognosefalls A auf QSV C verbessert werden. In der Nachmittagsspitze stellt sich die Qualitätsstufe B ein.

Unter den Belastungen des Prognosefalls B ist vormittags die QSV D in der Nebenrichtung zu erwarten. Nachmittags ist von einer besseren Verkehrsqualität auszugehen (QSV C oder besser).

Für die Variante lichtsignalgeregelter Knotenpunkt sind die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen für die Variante LSA unter den Belastungen des Prognosefalls A in **Anlage 3.7** für die Vormittagsspitze und in **Anlage 3.8** für die Nachmittagsspitze dargestellt. Die Ergebnisse im Prognosefall B unter Berücksichtigung des Umbaus zum signalgeregelten Knotenpunkt sind in **Anlage 3.9** (Vormittagsspitze) und **Anlage 3.10** (Nachmittagsspitze) dargestellt.

Alternativ ist auch der Umbau des Knotenpunktes zu einem Kreisverkehrsplatz denkbar. Bei einem Außendurchmesser von 30 Metern und einem Bypass von der L 3451 Südwest zur Straße Franzenburg sind unter den Verkehrsbelastungen des Prognosefalls A Qualitätsstufen A bis B zu erwarten. Im Prognosefall B stößt der Kreisverkehr vormittags mit QSV E an die Grenzen seiner Leistungsfähigkeit. Nachmittags dürfte sich die QSV B einstellen.

Für die Variante Kreisverkehrsplatz sind die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A in **Anlage 3.11** für die Vormittagsspitze und in **Anlage 3.12** für die Nachmittagsspitze dargestellt. Für den Prognosefall B sind die Ergebnisse in **Anlage 3.13** (Vormittagsspitze) und **Anlage 3.14** (Nachmittagsspitze) dargestellt.

5.4 L 3451 / Schanzenfeldstraße (KP 404)

Analog zum Knotenpunkt 403 ist auch dieser Knotenpunkt in der Nebenrichtung überlastet. Daher wird folgende Lösung vorgeschlagen:

Auch hier wird eine Lichtsignalanlage mit verkehrsabhängiger Steuerung eingerichtet. Die Nebenrichtung wird auf Anforderung freigegeben. Die Steuerung kann in zwei Phasen (Hauptrichtung, Nebenrichtung) ablaufen. Unter der Belastung des Prognosefalls B sollte der Linksabbiegerstrom der L 3451 vormittags mittels Diagonalgrün im Nachlauf zeitweise gesichert geführt werden. Nachmittags ist dies aufgrund der geringeren Verkehrsbelastung dieses Stroms nicht notwendig. Der Stauraum für den Linksabbieger ist mit ca. 100 Meter Länge ausreichend. In der Nebenrichtung ist der vorhandene Stauraum zu beachten.

Für die folgenden Berechnungsergebnisse werden eine Zwischenzeit von 5 Sekunden je Phasenwechsel und eine Umlaufzeit von 90 Sekunden angenommen.

Im Prognosefall A kann sowohl vor- als auch nachmittags die Verkehrsqualität des Linksabbiegerstroms und der Ströme der Nebenrichtung auf QSV B - C verbessert werden. Im Prognosefall B stellt sich für die Nebenrichtung und den Linksabbieger die Qualitätsstufe C - D ein. Die Geradeausströme der Hauptrichtung weisen in allen betrachteten Fällen die QSV A auf.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A unter Berücksichtigung des Umbaus zum signalgeregelten

Knotenpunkt sind in **Anlage 4.7** für die Vormittagsspitze und in **Anlage 4.8** für die Nachmittagsspitze dargestellt. Für den Prognosefall B sind die Ergebnisse in **Anlage 4.9** (Vormittagsspitze) und **Anlage 4.10** (Nachmittagsspitze) dargestellt.

Auch am Knotenpunkt 404 ist alternativ der Umbau des Knotenpunktes zu einem Kreisverkehrsplatz denkbar. Bei einem Außendurchmesser von 30 Metern ist unter den Verkehrsbelastungen des Prognosefalls A die Qualitätsstufe B zu erwarten. Im Prognosefall B stößt auch dieser Kreisverkehr vormittags mit QSV E - F an die Grenzen seiner Leistungsfähigkeit. Nachmittags ist unter diesen Belastungen die Qualitätsstufe C zu erwarten.

Für die Variante Kreisverkehrsplatz sind die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen im Prognosefall A in **Anlage 4.11** für die Vormittagsspitze und in **Anlage 4.12** für die Nachmittagsspitze dargestellt. Für den Prognosefall B sind die Ergebnisse in **Anlage 4.13** (Vormittagsspitze) und **Anlage 4.14** (Nachmittagsspitze) dargestellt.

5.5 L 3451 / Am Leitz-Park (KP 405)

In beiden Prognosefällen ist der Kreisverkehr überlastet. Es werden folgende Varianten untersucht und auf Ihre Leistungsfähigkeiten unter den Verkehrsbelastungen der Prognosefälle A bzw. B geprüft.

Planungsvariante 1:

Der Kreisverkehr erhält einen Bypass von der L 3451 Nordost zum Leitz-Park. Damit der benötigte Platz für den Bypass zu Verfügung gestellt werden kann, ist der Außendurchmesser von derzeit 50 m auf ca. 35 m zu verringern. Eine Skizze zur Anordnung des Bypasses ist in **Abbildung 6.1** dargestellt. Durch diese Anpassung wird im Prognosefall A eine gute Verkehrsqualität (QSV B) erreicht.

Im Prognosefall B ist ein einfacher Bypass aufgrund des hohen zusätzlichen Verkehrsaufkommens und der vierten Zufahrt zum 3. BA Blankenfeld jedoch nicht ausreichend. In der Spitzenstunde am Vormittag ist die Zufahrt aus Wetzlar (L 3451 aus Südwest) überlastet. In der Abendspitze ist zusätzlich die Zufahrt Am Leitz-Park überlastet.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen zur Planungsvariante 1 unter den Belastungen des Prognosefalls A sind für diesen Knotenpunkt in **Anlage 5.7** für die Vormittagsspitze und in **Anlage 5.8**

für die Nachmittagsspitze dargestellt. Die Ergebnisse für die Planungsvariante 1 unter den Belastungen des Prognosefalls B sind in **Anlage 5.9** für die Vormittagsspitze und in **Anlage 5.10** für die Nachmittagsspitze dargestellt.

Planungsvariante 2:

Der Kreisverkehr wird zum Turbo-Kreisverkehr mit jeweils zwei Fahrstreifen in den Zufahrten und einem Fahrstreifen in den Ausfahrten der Hauptrichtung ausgebaut. Die Zu- und Ausfahrten der Nebenrichtungen sind jeweils einspurig. Eine mögliche Anordnung der Fahrstreifen und des Kreisverkehrsplatzes ist der Skizze in **Abbildung 6.2** zu entnehmen.

Im Prognosefall A sowie zur Vormittagsspitze im Prognosefall B werden durch diese Umbaumaßnahme gute Verkehrsqualitäten erreicht. Zur Nachmittagsspitze im Prognosefall B ist der Knotenpunkt jedoch leicht überlastet. Maßgebend sind die Zufahrten L 3451 – Südwest und Leitz-Park.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen der Planungsvariante 2 für den Prognosefall A in **Anlage 5.11** (Vormittagsspitze) und **Anlage 5.12** (Nachmittagsspitze) und für den Prognosefall B in **Anlage 5.13** (Vormittagsspitze) und **Anlage 5.14** (Nachmittagsspitze) dargestellt.

Planungsvariante 3:

Diese Variante ist eine Erweiterung der Planungsvariante 2. Statt jeweils einer Ausfahrt in der Hauptrichtung erhält der Turbo-Kreisverkehr zwei Ausfahrten. Dies bedingt eine erhebliche Aufweitung der L 3451 vor und hinter dem Kreisverkehr. Eine Skizze zur Planungsvariante 3 ist in **Abbildung 6.3** dargestellt.

Während der Vormittagsspitze ergeben sich in beiden Prognosefällen Qualitätsstufen A bis B in allen Zufahrten. Am Nachmittag weist die Zufahrt vom Leitz-Park die QSV E auf.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen der Planungsvariante 3 für den Prognosefall A in **Anlage 5.15** (Vormittagsspitze) und **Anlage 5.16** (Nachmittagsspitze) und für den Prognosefall B in **Anlage 5.17** (Vormittagsspitze) und **Anlage 5.18** (Nachmittagsspitze) dargestellt.

Planungsvariante 4:

Sollte das Platzangebot für die Kreisverkehr-Varianten nicht zur Verfügung gestellt werden können, ist auch die Errichtung einer Lichtsignalanlage

anstelle des Kreisverkehrs denkbar. Eine mögliche Anordnung des lichtsignalgeregelten Knotenpunktes ist in einer Skizze in **Abbildung 6.4** dargestellt.

Für die nachfolgenden Ergebnisse der Leistungsfähigkeitsbetrachtungen wird eine Zwischenzeit von 5 Sekunden je Phasenwechsel und eine Umlaufzeit von 90 Sekunden angenommen.

In den Spitzenstunden am Vor- und Nachmittag des Prognosefalls B ist die Qualitätsstufe E zu erreichen. Der Knotenpunkt kann durch eine den Verkehrsbelastungen angepasste Steuerung ausreichend leistungsfähig gestaltet werden.

Gute bis sehr gute Verkehrsqualitäten können an diesem Knotenpunkt nur hergestellt werden, wenn die Zufahrt Am Leitz-Park zweispurig ausgeführt wird. Die dafür benötigte Fläche ist jedoch nur herzustellen, wenn der Kreisverkehrsplatz abweichend der Trasse der L 3451 in Richtung Baugebiet Blankenfeld 3. BA angeordnet wird.

Grundsätzlich sind die hier vorgeschlagenen Varianten bzgl. der benötigten Flächen straßenbaulich zu prüfen. Die Grundlage für die dargestellten Skizzen bilden Luftbilder und das Kataster der Stadt Wetzlar.

5.6 Frankfurter Straße / Lessingstraße (KP 406)

Gemäß Leistungsfähigkeitsberechnungen im Bestand und in den Prognosefällen ist vormittags die Nebenrichtung aus der Lessingstraße überlastet. Eine Anpassung der Signalsteuerung ist daher notwendig.

Der Linksabbiegerstrom aus Osten (Signalgruppe K4) erhält vormittags statt 17 Sekunden, zukünftig noch 6 Sekunden Freigabezeit. Dies ist aufgrund der geringen Verkehrsbelastung dieses Stroms ausreichend. Der Linkseinbiegerstrom (Signalgruppe K6) aus der Lessingstraße erhält statt 17 Sekunden zukünftig 28 Sekunden Freigabezeit. Nachmittags wird die Freigabezeit der Signalgruppe K4 auf 12 Sekunden reduziert. Die Hauptrichtung (K1, K2 und K3) erhält 1 zusätzliche Sekunde Freigabezeit, der Linkseinbiegerstrom aus der Lessingstraße (K6) erhält 20, statt 17 Sekunden Freigabezeit.

Durch diese Anpassungen kann in beiden Prognosefällen die Leistungsfähigkeit wieder hergestellt werden. Die Stauraumlängen reichen nach Westen bis knapp an den Knotenpunkt 402 heran, sind jedoch noch

ausreichend. In der Vormittagsspitze reicht trotz Anpassung der Signalsteuerung der Stauraum in der Lessingstraße für den Linkseinbieger nicht aus. Gelöst werden kann dies nur, wenn die Rechtsabbiegespur zusätzlich für den Linksabbieger freigegeben wird und die L 3360 bereits ab diesem Knotenpunkt in westlicher Fahrtrichtung zweispurig ausgebaut wird.

Die ausführlichen Ergebnisse der Leistungsfähigkeitsberechnungen unter Berücksichtigung der angepassten Steuerung und unter den Verkehrsbelastungen des Prognosefalls A sind für diesen Knotenpunkt in **Anlage 6.7** für die Vormittagsspitze und in **Anlage 6.8** für die Nachmittagsspitze dargestellt. Für den Prognosefall B sind die Ergebnisse in **Anlage 6.9** (Vormittagsspitze) und **Anlage 6.10** (Nachmittagsspitze) dargestellt.

5.7 Spilburgstraße / Schanzenfeldstraße / Sportparkstraße / Charlotte-Bamberg-Straße (KP 407)

Da sowohl im Bestand als auch in den Prognosefällen die Qualitätsstufe A erreicht wird, ist dieser Knotenpunkt als ausreichend leistungsfähig zu betrachten. Es bedarf keiner Anpassung.

Wiesbaden, im Mai 2018

HEINZ + FEIER GmbH

ANLAGEN

Anlage 1.1:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Bestand
Anlage 1.2:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Bestand
Anlage 1.3:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall A
Anlage 1.4:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall A
Anlage 1.5:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall B
Anlage 1.6:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall B
Anlage 1.7:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A
Anlage 1.8:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A
Anlage 1.9:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B
Anlage 1.10:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B

Anlage 2.1:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt
	402 in der Spitzenstunde am Vormittag im Bestand

- Anlage 2.2: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Bestand
- Anlage 2.3: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag im Prognosefall A
- Anlage 2.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Prognosefall A
- Anlage 2.5: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag im Prognosefall B
- Anlage 2.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Prognosefall B
- Anlage 2.7: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls A
- Anlage 2.8: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls A
- Anlage 2.9: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls B
- Anlage 2.10: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls B
- Anlage 2.11: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls A
- Anlage 2.12: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls A

- Anlage 2.13: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls B
- Anlage 2.14: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls B

Anlage 3.1:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Bestand
Anlage 3.2:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Bestand

- **Anlage 3.3:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Prognosefall A
- Anlage 3.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Prognosefall A
- **Anlage 3.5:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Prognosefall B
- Anlage 3.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Prognosefall B
- Anlage 3.7: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A
- Anlage 3.8: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A
- Anlage 3.9: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B
- Anlage 3.10: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B
- Anlage 3.11: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A
- Anlage 3.12: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

- Anlage 3.13: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B
- Anlage 3.14: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B

Anlage 4.1:	Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt
	404 in der Spitzenstunde am Vormittag im Bestand

- **Anlage 4.2:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Bestand
- **Anlage 4.3:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag im Prognosefall A
- Anlage 4.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Prognosefall A
- **Anlage 4.5:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag im Prognosefall B
- Anlage 4.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Prognosefall B
- Anlage 4.7: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A
- Anlage 4.8: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A
- Anlage 4.9: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B
- Anlage 4.10: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B
- Anlage 4.11: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A
- Anlage 4.12: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

- Anlage 4.13: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B
- Anlage 4.14: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B

- **Anlage 5.1:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Bestand
- Anlage 5.2: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Bestand
- Anlage 5.3: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Prognosefall A (dreiarmiger Kreisverkehr)
- Anlage 5.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Prognosefall A (dreiarmiger Kreisverkehr)
- Anlage 5.5: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Prognosefall B (vierarmiger Kreisverkehr)
- Anlage 5.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Prognosefall B (vierarmiger Kreisverkehr)
- Anlage 5.7: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.8: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.9: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls B
- Anlage 5.10: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

- Anlage 5.11: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.12: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.13: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B
- Anlage 5.14: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B
- Anlage 5.15: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 3 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.16: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 3 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A
- Anlage 5.17: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 3 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B
- Anlage 5.18: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 3 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B
- Anlage 5.19: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der

Planungsvariante 4 (vierarmiger lichtsignalgeregelter Knotenpunkt) und den Belastungen des Prognosefalls B

Anlage 5.20: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 4 (vierarmiger lichtsignalgeregelter Knotenpunkt) und den Belastungen des Prognosefalls B

- **Anlage 6.1:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Bestand
- Anlage 6.2: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Bestand
- **Anlage 6.3:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Prognosefall A
- Anlage 6.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Prognosefall A
- **Anlage 6.5:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Prognosefall B
- Anlage 6.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Prognosefall B
- Anlage 6.7: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A
- Anlage 6.8: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A
- Anlage 6.9: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B
- Anlage 6.10: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B

- **Anlage 7.1:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Bestand
- **Anlage 7.2:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Bestand
- Anlage 7.3: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Prognosefall A
- Anlage 7.4: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Prognosefall A
- **Anlage 7.5:** Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Prognosefall B
- Anlage 7.6: Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Prognosefall B

ABBILDUNGEN

Abb. 6.4:

Abb. 1:	Übersichtsplan
Abb. 2.1:	Verkehrsbelastung im Bestand - Spitzenstunde am Vormittag
Abb. 2.2:	Verkehrsbelastung im Bestand - Spitzenstunde am Nachmittag
Abb. 3.1:	Verkehrsbelastung im Prognosefall A - Spitzenstunde am Vormittag
Abb. 3.2:	Verkehrsbelastung im Prognosefall A - Spitzenstunde am Nachmittag
Abb. 4.1:	Verkehrsbelastung im Prognosefall B - Spitzenstunde am Vormittag
Abb. 4.2:	Verkehrsbelastung im Prognosefall B - Spitzenstunde am Nachmittag
Abb. 5.1:	Knotenpunkt L 3451 / L 3360 (KP 402): Skizze zur Planungsvariante 1
Abb. 5.2:	Knotenpunkt L 3451 / L 3360 (KP 402): Skizze zur Planungsvariante 2
Abb. 6.1:	Knotenpunkt L 3451 / Am Leitz-Park (KP 405): Skizze zur Planungsvariante 1
Abb. 6.2:	Knotenpunkt L 3451 / Am Leitz-Park (KP 405): Skizze zur Planungsvariante 2
Abb. 6.3:	Knotenpunkt L 3451 / Am Leitz-Park (KP 405): Skizze zur Planungsvariante 3

Knotenpunkt L 3451 / Am Leitz-Park (KP 405):

Skizze zur Planungsvariante 4

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Bestand (1)

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
į.		Wetzlar															
K	notenpunkt:					Hasenp	fad										
Z		Vormittag			mit ÖV												
Į.	Bearbeiter:	HEINZ+F	EIER Gm	ıbН													
	t _U =	131	[s]	f _{in} =	1,103	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	, Albania and Albania and Albania
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
		(-)	(°)		(×)	L (°)		(*)	Phase		(,,)	(12)	(10)		(10)	(, 0)	()
1	Z1/FS12	295	2000	49	56	870	0,339	0,435		7,411	95	12,015	1,000	72	25,7	В	K2 - von W - G
2	Z1/FS13	703	1891	49	56	823	0.854	0,435	5,764	28,765	95	37,836	1,040	236	58,5	D	K2 - von W - G+R
3	Z3/FS32	547	2000	49	49	763	0,717	0,382	1,814	18,755	95	26,079	1,000	156	43,0	С	K5 - von O - G
4	Z3/FS33	511	1866	49	49	712	0,717	0,382	1,820	17,653	95	24,759	1,049	156	43.7	С	K5 - von O - G+R
5																	
6																	
7																	
								*	Phase:	2							
8	Z1/FS11	226	1813	20	20	291	0,778	0,160	2,493	10,382	95	15,832	1,012	96	83,6	Е	K3 - von W - L
9	Z3/FS31	8	1887	20	10	158	0,050	0,084	0,029	0,297	95	1,219	1,000	7	55,9	D	K6 - von O - L
10																	
11																	T.
12																	
13																	T-
14																	
									Phase								
15	Z2/FS21	60	1383	20	20	222	0,271	0,160		2,128	95	4,596	1,000	28	51,7	D	K1 - von S - L+G+R
16	Z4/FS41	124	1495	20	20	240	0,517	0,160	0,651	4,782	95	8,480	1,007	51	60,1	D	K4 - von N - L
17	Z4/FS42	110	1753	20	20	281	0,391	0,160	0,377	3,963	95	7,330	1,025	45	54,1	D	K4 - von N - G+R
18																	
19									البيا								
									Phase								
20	Z1/FS14	14	1053	12	5	48	0,290	0,046	0,230	0,723	95	2,160	1,900	25	77,6	E	K41, 42 - BUS
21																	
22																	
23																	
24									Db								
OF.		-			-	-			Phase	9							
25 26									-								
26		 		-		l											1
28 29																	
29									Phase								
30		1	-	-		1		-	i ilase				- 1		-		1
31	Ž																
32																	
33	,	-															Ti-
34																	
5-4		-							Knotenpu	ınkt						L	
_	Summe:	2598				4408			Linoteript								
dew	. Mittelwert:	2000				7700	0,679								50,6		
9011	Maximum:		U s				0.854			0				236	83.6	Е	
-	wattiwitt.						0,007							200	0,00		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Bestand (2)

							Kno	otenpun	kt mit Lic	htsignala	nlage						
						Bewe	ertung de	r Verkeh	rsqualität	im Kraft	fahrzeug	gverkehr					
	Projekt:	VU Franz	enburg						•								
		Wetzlar															
K	notenpunkt:	KP 401: F	rankfurte	r Str S	pilburgstr	Hasenp	fad										
Z	eitabschnitt:	Vormittag	sspitze -	Bestand	nur IV												
	Bearbeiter:	HEINZ+F	EIER Gm	bH													
	t _U =	114	[s]	f _{in} =	1,103	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	574500000	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	SUDDENSITY OF THE PARTY OF THE
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
		L (=) 1	(~)		L (°)	L (°)	- 0.7	(°)	Phase			(12)	(,,~)		1.0	(,0)	
1	Z1/FS12	295	2000	49	56	1000	0,295	0,500		5,720	95	9,765	1,000	59	17,6	A	K2 - von W - G
2	Z1/FS13	703	1891	49	56	946	0.744	0,500	2,183	19,900	95	27,445	1,040	171	31,0	В	K2 - von W - G+R
3	Z3/FS32	547	2000	49	49	877	0,624	0,439	1,087	14,472	95	20,906	1,000	125	29,2	В	K5 - von O - G
4	Z3/FS33	511	1870	49	49	820	0,623	0,439	1,083	13,583	95	19,816	1,049	125	29,5	В	K5 - von O - G+R
5																	
6																	
7											1						
								-	Phase :	2							Sec.
8	Z1/FS11	226	1813	20	20	334	0,677	0,184	1,392	8,062	95	12,864	1,012	78	58,3	D	K3 - von W - L
9	Z3/FS31	8	1887	20	10	182	0,044	0,096	0,025	0,255	95	1,110	1,000	7	47,2	С	K6 - von O - L
10																	
11																	
12																	
13																	
14	Î																
									Phase 3								
15	Z2/FS21	60	1424	20	20	262	0,229	0,184	0,168	1,786	95	4,047	1,000	24	41,9	C	K1 - von S - L+G+R
16	Z4/FS41	124	1516	20	20	279	0,444	0,141	0,474	3,963	95	7,330	1,007	45	51,0	D	K4 - von N - L
17	Z4/FS42	110	1753	20	20	323	0,341	0,184	0,299	3,331	95	6,418	1,025	39	43,8	С	K4 - von N - G+R
18		-	_	_											-		
19						ļ			Disease								
20	-	-	_			r -			Phase	4					-		
21			-				_					\vdash			_	_	
22			1325					-									
23	,		1020				-	-	-						-	-	
24	ž.						-								-		
2-7	l i			-			-		Phase	5					-		
25	[1				- 1	7	I						-		1
26																	
27																	
28	7																1
29																	
							-		Phase	6						1	
30	ā.																II
31																	
32										/							
33	a7 2:																7
34	î i																
								3	Knotenpu	ınkt							
	Summe:	2584				5023											
gew	r. Mittelwert:						0,592			11	Ш				32,8		
	Maximum:		3				0,744		0.0	(d				171	58,3	D	

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Bestand (1)

							Kn	otennun	kt mit Lic	hteianala	nlane						
-						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enbura			Don	rically ac	TOTAGE	noquanta	. IIII i ti care	Tariizeaş	gi ontoni					
		Wetzlar															
K	notenpunkt:		rankfurte	r Str St	oilburastr	- Hasenn	fad										
	eitabschnitt:																
	Bearbeiter:																
	t _u =		[s]	f _{in} =	1,055	[-1	T =	1.0	[h]								
lfd.	Bez.				A 50 A 000	C		7,500		N.I.	S	N	4	1	120	QSV	Bemerkungen
Nr.	DCL.	Q _{Kfz}	q _s	t _F	t _F	14575	X	f _A	N _{GE}	N _{MS}		N _{MS,S}	fsv	Ls	t _{vv}		Demorkangen
J.M.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
-	715010	400	2000	-10		070	0.100	0.105	Phase		0.5	47.000	1.000	40.4	20.7		120 101 0
1	Z1/FS12	423	2000	49	56	870	0,486	0,435		11,551	95	17,299	1,000	104	28,7	В	K2 - von W - G
2	Z1/FS13	416	1965	49	56	855	0,487	0,435	0,525	11,373	95	17,076	1,017	104	28,7	В	K2 - von W - G+R
3	Z3/FS32	453	2000	49	49	763	0,593	0,382	0,829	14,006	95	20,335	1,000	122	36,3	С	K5 - von O - G
4	Z3/FS33	436	1925	49	49	735	0,593	0,382	0,828	13,511	95	19,727	1,033	122	36,4	С	K5 - von O - G+R
5									\vdash								
6		.															
7																	
	74/5044	4271	4700	-00	00	000	0.407	0.400	Phase:		0.5	7.000	4.000	21	F4.	-	100
8	Z1/FS11	117	1793	20	20	288	0,407	0,160		4,198	95	7,663	1,023	47	54,1	D	K3 - von W - L
9	Z3/FS31	26	1887	20	10	158	0,164	0,084	0,104	0,983	95	2,660	1,000	16	58,1	D	K6 - von O - L
10		\vdash															
11																	
12										/							
13												-					
14																	
L.									Phase					6-1			
15	Z2/FS21	40	1167	20	20	187	0,214	0,063		1,411	95	3,419	1,000	28	61,4	D	K1 - von S - L+G+R
16	Z4/FS41	123	1555	20	20	249	0,493	0,126		4,616	95	8,249	1,007	50	61,1	D	K4 - von N - L
17	Z4/FS42	215	1784	20	20	286	0,752	0,160	1,740	9,210	95	14,343	1,004	86	74,4	Е	K4 - von N - G+R
18			\rightarrow						-								
19																L	
- 00	7.5011		405-1	40	-		0.455	0.0:-	Phase		0.5	4 40-1	4.000	7.1	07.	-	1777 40 BUID
20	Z1/FS14	8	1053	12	5	48	0,166	0,046	0,105	0,385	95	1,435	1,900	16	67,9	D	K41, 42 - BUS
21																	
22																	
23			\rightarrow														
24									L							l .	
OF.						, ,			Phase	0				-		r	
25	ā i																
26																	
27										/							
28																	
29									لــــــــــــــــــــــــــــــــــــــ								
									Phase	b							
30																	
31																	
32										/							
33																	
34																	
0						1000			Knotenpu	ınkt							
	Summe:	2257				4440	0.57										
gew	r. Mittelwert:						0,540								39,8		
	Maximum:		8 3		3 0		0,752		50					122	74,4	E	A

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Bestand (2)

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe	ertung de	r Verkeh	rsqualität	im Kraft	fahrzeug	gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
K	notenpunkt:	KP 401: F	rankfurte	r Str S	pilburgstr	Hasenp	fad										
	eitabschnitt:																
		HEINZ+F															
	t _o =	114	[s]	f _{in} =	1,055	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	C	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _w	QSV	Bemerkungen
Nr.						1,40,741				[Kfz]	[%]						- Donnonnangon
	{1}	[Kfz/h] {2}	[Kfz/h]	[s] {4}	[s] {5}	[Kfz/h]	[-] {7}	[-]	[Kfz] {9}	[NIZ] {10}	[70] {11}	[Kfz] {12}	[-] {13}	[m] {14}	[s] {15}	[-] {16}	{17}
	[1]	{Z}	{3}	(4)	{2}	{6}	[/]	{8}	Phase		{11}	{12}	{13}	{14}	{10}	{10}	[17]
1	Z1/FS12	423	2000	49	56	1000	0,423	0,500		8,896	95	13,940	1,000	84	19,5	A	K2 - von W - G
2	Z1/FS13	416	1965	49	56	983	0,423	0,500	0,402	8,758	95		1,000	84	19,5		K2 - von W - G+R
3	Z3/FS32	416	2000	49	49	983 877	0,423	0,500	0,403	11,007	95	13,763 16,618	1,000	100	25,7	A B	K5 - von O - G
4	Z3/FS32 Z3/FS33	436	1926	49	49	845	0,516	0,439	0,595	10,614	95	16,124	1,000	100	25,7	В	K5 - von O - G+R
5	LUIFOOO	430	1920	49	49	040	0,510	0,439	0,090	10,014	90	10,124	1,033	100	20,0	D	NO - VOILO - GTR
6	is the state of th																
7						h		-									
- 1									Phase :	,							
8	Z1/FS11	117	1793	20	20	330	0,354	0,184	0,297	3,530	95	6,708	1,023	41	43,8	С	K3 - von W - L
9	Z3/FS31	26	1887	20	10	182	0,334	0,104	0,297	0.843	95	2,395	1,023	14	48,9	C	K6 - von O - L
10	ZUIFUU I	20	1007	ZU	10	102	0,143	0,090	0,009	0,045	90	2,090	1,000	14	40,9	U	NO - VOIT O - L
11	ķ i					 											
12		-				-			-			-					
13		-										\vdash					
14	b																
14				-					Phase 3	-							
15	Z2/FS21	40	1251	20	20	230	0,174	0,184		1,179	95	3,016	1,000	18	40,9	С	K1 - von S - L+G+R
16	Z4/FS41	123	1569	20	20	289	0,174	0,184	0,112	3,852	95	7,171	1,007	43	46,3	Č	K4 - von N - L
17	Z4/FS42	215	1784	20	20	329	0.654	0,184	1.075	7,390	95	11,988	1,007	72	54.9	D	K4 - von N - G+R
18	27/1 072	210	1704	20	20	320	0,004	0,104	1,070	7,000	- 00	11,000	1,004	7.2	07,0		104 - 1011 14 - 0 110
19	7																
10									Phase	4							
20									I IIIasc I	1						r -	
21	į.																
22				_													
23																	
24	Ų.																
2-7				-					Phase	5						l	
25									1,,,,,,,,,		- 0						
26	7														- 9		
27																	
28																	
29	7														- 9		
20				-					Phase	3						l	
30									1,,,,,,,,,		-						
31	7														- 9		
32				_													
33																	
34	7														- 6		
54				-					Knotenpu	nkt							
_	Summe:	2249				5065			I								
aew	. Mittelwert:	22 10				3000	0,471								28,8		
9-11	Maximum:		N =				0.654			0				100	54.9	D	
_	actinatili.						0,004		100					,50	07,0		

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall A (1)

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe				t im Kraft		gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Kno	otenpunkt:	KP 401: F	- rankfurte	r Str S	pilburgstr	Hasenp	fad										
Zeit	tabschnitt:	Vormittag	gsspitze - I	Prognose	A mit Ö	V											
E	Bearbeiter:	HEINZ+F	EIER Gm	bН													
	t _u =	131	[s]	f _{in} =	1,103	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	5000000000	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
-	{1}	{2}	{3}	[3] {4}	{5}	{6}	[-] {7}	[-] {8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	/II	145	ſοl	J-t	1-1	Jol.	1/1	ſοί	Phase		Till	1125	1101	fi4t	1101	1105	7177
1 Z	1/FS12	295	2000	49	56	870	0,339	0.435	0.298	7,411	95	12.015	1.000	72	25.7	В	K2 - von W - G
	1/FS13	798	1924	49	56	837	0,953	0,435	19,146	47,174	95	58,790	1.039	367	118,0	E	K2 - von W - G+R
	3/FS32	600	2000	49	49	763	0,786	0,382	2,961	22,246	95	30,223	1,000	181	49,7	C	K5 - von O - G
	3/FS33	561	1854	49	49	708	0,793	0,382	3,107	21,206	95	28,995	1,051	183	51.7	D	K5 - von O - G+R
5		001	1004	- 10	10	1,50	0,100	0,002	0,101	21,200		20,000	1,001	,00	V 1,1		
6												\vdash					
7																	
									Phase	2				-			
8 Z	1/FS11	435	1812	20	20	291	1,497	0,160	73,710	89,539	95	105,542	1,012	641	968,3	F	K3 - von W - L
	3/FS31	8	1887	20	10	158	0.050	0,100	0.029	0.297	95	1,219	1,000	7	55.9	D	K6 - von O - L
10		, i	1007	20	10	,50	0,000	0,004	0,020	0,201		1,210	1,000		00,0		70110 2
11												\vdash					7
12				-								1			-	15-	
13	-											1	-				
14						1	_					\vdash					
14		-							Phase	3							
15 Z	2/FS21	66	1368	20	20	219	0,301	0,160	0,247	2,366	95	4,967	1,000	30	52,6	D	K1 - von S - L+G+F
	4/FS41	131	1481	20	20	237	0,552	0,160	0,756	5,147	95	8,985	1,007	54	62,1	D	K4 - von N - L
	4/FS42	139	1749	20	20	280	0,496	0,160	0.594	5.208	95	9.067	1,026	56	57.8	D	K4 - von N - G+R
18	10 0 12	100	11 10	20	20	200	0,100	0,100	0,001	0,200		0,001	1,020		0,,0		101 401111 0310
19						1						\vdash					
									Phase	4							
20 Z	1/FS14	14	1089	12	5	50	0,281	0.046	0.219	0,712	95	2,138	1.836	24	76.2	Е	K41, 42 - BUS
21			1000		-		0,201	0,010	0,210	9,1 12		2,100	1,000		10,2		((11, 12 000
22																	
23		-															
24						1						\vdash					
					-				Phase	5							
25																	
26													- 3				7
27																	
28		-															
29																	1
									Phase	6				-			
30	1		1										1	1			1
31																	
32					-												
33																	
34																	
-7 [Knotenpu	ınkt					_		
	0	3047				4414				,							
	Summe																
aew	Summe: Mittelwert:	3047					0,851			-					197,9		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall A (2)

						-				htsignala							
	Duniala	MIF				Bewe	ertung de	r Verkeh	rsqualitä	t im Kraft	fahrzeu	gverkehr					
		VU Fran:	zenburg														
1/0.0		Wetzlar	Frantfusta		n il bu i e mate	Honone	fool										
	otenpunkt: tabschnitt:					Hasenp	rad										
			EIER Gr		a A Hui IV												
					1,103	In a	Τ=	4.0	[h]								
16 -1	t ₀ =	20.000	[s]	f _{in} =	7.5550000000	[-]											T Benediction
lfd.	Bez.	q _{Kfz}	q_s	t _F	ţ _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS} ,s	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	1/FS12	295	2000	49	56	1000	0,295	0,500	0,241	5,720	95	9,765	1,000	59	17,6	A	K2 - von W - G
	1/FS13	798	1924	49	56	962	0,830	0,500	4,519	26,108	95	34,750	1,039	217	41,3	С	K2 - von W - G+R
	3/FS32	600	2000	49	49	877	0,684	0,439	1,500	16,738	95	23,658	1,000	142	31,8	В	K5 - von O - G
	3/FS33	561	1882	49	49	825	0,680	0,439	1,461	15,670	95	22,365	1,051	141	32,0	В	K5 - von O - G+R
5																	
6	-																
7			1														
									Phase								-
	1/FS11	435	1812	20	20	334	1,303	0,184	52,638	66,413	95	80,195	1,012	487	614,1	F	K3 - von W - L
	3/FS31	8	1887	20	10	182	0,044	0,096	0,025	0,255	95	1,110	1,000	7	47,2	С	K6 - von O - L
10																	
11	i i																1
12																	
13																Ĭ.	
14																	
									Phase	3							
	2/FS21	66		20	20	260	0,254	0,184	0,194	1,982	95	4,363	1,000	26	42,5	С	K1 - von S - L+G+R
	4/FS41	131	1504	20	20	277	0,473	0,184	0,537	4,245	95	7,729	1,007	47	48,5	С	K4 - von N - L
17 Z	4/FS42	133	1749	20	20	322	0,413	0,184	0,415	4,133	95	7,572	1,027	47	45,7	С	K4 - von N - G+R
18																	
19																	
									Phase	4				- 10			
20																	
21										-							1
22			l,							1							
23																	Y
24																	1
									Phase	5							
25																	
26										-							1
27			l,							1							
28																	
29																	1
									Phase	6							
30										_							
31	- 1														- 6	ļ.	T.
32																	1
33																	
34	- 1																1
									≺notenpi	ınkt							
	Summe:	3027				5040				1							
gew. I	Mittelwert:		ī				0,740			ī ī	ī				118,2		
	Maximum:		0 3				1,303							487	614,1	F	1

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall A (1)

									kt mit Lic								
						Bewe			rsqualität			gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Knot	enpunkt:	KP 401: I	Frankfurte	r Str S	pilburgstr	Hasenp	fad										
Zeita			agsspitze		se A mit	٥v											
Ве	earbeiter:	HEINZ+F	EIER Gm	ıbН													
	t _u =	131	[s]	f _{in} =	1,055	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	ţ _F	С	Х	f _A	Nge	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	1100000000	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	SILONS WILLOWING HINDS
-	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	[4]	(2)	(0)	- (1)	(∨)	(~)		[0]	Phase		(111)	(12)	[10]	(1-1)	(10)	[10]	
1 Z1	/FS12	497	2000	49	56	870	0,571	0,435	0,752	14,347	95	20,752	1.000	125	30,9	В	K2 - von W - G
	/FS13	427	1954	49	56	850	0,502	0,435	0,561	11,792	95	17,600	1,023	108	29,1	В	K2 - von W - G+R
	/FS32	526	2000	49	49	763	0,689	0,382	1,303	17,361	95	24,408	1,000	146	40,1	Ċ	K5 - von O - G
	/FS33	498	1917	49	49	732	0,681	0,382	1,247	16,385	95	23,231	1.038	145	40.0	C	K5 - von O - G+R
5					-		-1-21	-,			75.5		.,				
6																	T
7																	
	72					5			Phase :	2						5	-
8 Z1	/FS11	162	1776	20	20	285	0,569	0,160	0,735	6,182	95	10,387	1,033	64	60,1	D	K3 - von W - L
	/FS31	29	1887	20	10	158	0,183	0,084	0,119	1,101	95	2,876	1,000	17	58,5	D	K6 - von O - L
10																	
11	- 6)	1
12																	
13																	
14																1	1
-			•						Phase 3	3		•					
15 Z2	/FS21	43	948	20	20	152	0,283	0,160	0,211	1,588	95	3,719	1,000	22	53,4	D	K1 - von S - L+G+R
16 Z4	/FS41	135	1551	20	20	249	0,543	0,160	0,657	5,175	95	9,022	1,007	54	60,1	D	K4 - von N - L
17 Z4	/FS42	304	1769	20	20	284	1,072	0,160	15,207	26,270	95	34,938	1,012	212	248,1	F	K4 - von N - G+R
18																	
19																	1
									Phase -								
	/FS14	8	1053	12	5	48	0,166	0,046	0,105	0,385	95	1,435	1,900	16	67,9	D	K41, 42 - BUS
21																	
22																	1
23																1	
24																	1
									Phase :	5							
25																	
26																	
27																	
28			\Box														
29																	
00	-								Phase	b							
30																	
31																	
32															-		
33																	
34										1016.41							
	0	20.55				1000			Knotenpu	ınkt							
	Summe:	2629				4391	0.050								00.1		
	littelwert:						0,650								63,4		
M	laximum:		()				1,072		2 99	0				212	248,1	F	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall A (2)

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
K	notenpunkt:		rankfurte	r Str Si	pilburgstr	Hasenp	fad										
		Nachmitte															
		HEINZ+F															
	t _ú =	114	[s]	f _{in} =	1,055	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	C	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _w	QSV	Bemerkungen
Nr.						100,70		177			[%]						- Donnonnangon
	640	[Kfz/h]	[Kfz/h]	[S]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]		[Kfz]	[-]	[m]	[S]	[-]	(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9} Phase	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
1	Z1/FS12	497	2000	49	56	1000	0,497	0,500	0,549	11,020	95	16,635	1,000	100	20,9	В	K2 - von W - G
2	Z1/FS12 Z1/FS13	497	1954	49	56	977	0,497	0,500	0,349	9,078	95	14,174	1,000	87	19,8	A	K2 - von W - G+R
		526	2000	49	49	877					95					В	
3	Z3/FS32 Z3/FS33	498	1918	49	49	841	0,600 0,592	0,439	0,853 0.824	13,541 12,783	95	19,765	1,000 1,038	119 117	27,9 27.8	В	K5 - von O - G
	∠3/F333	498	19.19	49	49	841	0,092	0,439	υ,824	12,183	90	18,829	1,038	117	21,8	В	K5 - von O - G+R
5	<u> </u>																
6																	
I									Phase	2							
0	71/EC11	160	4770	20	20	207	0.405	0.404			0E	0 0001	4 0001	EC	47.7		1/2 you 18/ 1
8	Z1/FS11 Z3/FS31	162 29	1776 1887	20	20	327 182	0,495 0,159	0,184	0,541 0,101	5,146 0.943	95 95	8,982 2,586	1,033	56 16	47,7 49.2	C	K3 - von W - L K6 - von O - L
10	Z3/F33 I	29	1007	20	10	102	0,159	0,096	0,101	0,943	95	2,560	1,000	10	49,2	C	NO - VOII O - L
10																	
												_			-		
12												_					
13	0 3 0 P																
14									Phase								
15	70/E004	401	4074	20	20	400	0.247	0.404			05	2 222	1 000	401	40.0	-	1/1 you C 1.0.D
15 16	Z2/FS21 Z4/FS41	43 135	1074 1565	20 20	20	198 288	0,217 0,468	0,184 0,184	0,148 0,483	1,305 4,299	95 95	3,238 7,806	1,000 1,007	19 47	42,2 47,5	C	K1 - von S - L+G+R K4 - von N - L
17	Z4/FS41 Z4/FS42	304	1769	20	20	326	0,468	0,184		15,597	95	22,276	1,007	135	113.3	E	K4 - von N - G+R
18	Z41F34Z	504	1709	20	20	320	0,933	0,104	0,114	19,581	90	22,210	1,012	155	113,3		IVA - VOILIN - OTK
19	8 - E																
19				-					Phase	4						l	
20								-	Filase	1			-	-	_		
21	2 E																
22	-											 	-				
23																	7
23	2 E																
24									Phase	5							
25	-		- 1			1			i ilase	_			- 1				11
26	2 E																-
27													-			15	ì
28																	7
29	ğ ş											\vdash					
29									Phase	6							
30								-	Filase	_			-	-	_		
31															i i		
32													-				1
33															-		
33															i i		
34						<u> </u>			(noton:	unkt							
_	Summe:	2624				5047			Knotenpu	II IKL							
dow	. Mittelwert:	2621				5017	0,567								37,9		
gen							0,933		-	1				135	113,3	E	
ļ	Maximum:		0				0,933			0		1		133	113,3		

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall B (1)

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe	ertung de	r Verkeh	rsqualitä	t im Kraft	fahrzeug	gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Kr	otenpunkt:	KP 401: I	Frankfurte	r Str Sp	pilburgstr	Hasenp	fad										
Ze	itabschnitt:	Vormittag	gsspitze - I	Prognose	B mit Ö	V											
į.	Bearbeiter:	HEINZ+F	EIER Gm	bН													
- 10	t _o =	131	[s]	f _{in} =	1,103	[-]	T =	1,0	[h]								
lfd.	Bez.				715/30/32/15	C				NI I	0	No.	4	1	140	QSV	Bemerkungen
Nr.	Dez.	q _{Kfz}	qs	t _F	ţ _F	1,000	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	William Programme	Demerkungen
NI.		[Kfz/h]	[Kfz/h]	[S]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
1 2	Z1/FS12	295	2000	49	56	870	0,339	0,435	0,298	7,411	95	12,015	1,000	72	25,7	В	K2 - von W - G
2 2	Z1/FS13	878	1878	49	56	817	1,074	0,435	46,870	78,819	95	93,834	1,042	587	243,5	F	K2 - von W - G+R
3 2	Z3/FS32	617	2000	49	49	763	0,808	0,382	3,577	23,652	95	31,878	1,000	191	53,1	D	K5 - von O - G
	Z3/FS33	577	1852	49	49	707	0,816	0,382	3,808	22,666	95	30,717	1,055	194	55,8	D	K5 - von O - G+R
5																	
6																	7
7																	
						3.			Phase	2							1
8 2	Z1/FS11	479	1798	20	20	288	1,662	0,160	96,648	114,078	95	132,142	1,021	809	1262,3	F	K3 - von W - L
	Z3/FS31	4/3	1887	20	10	158	0.050	0.084	0.029	0.297	95	1,219	1,021	7	55.9	D	K6 - von O - L
10	-0/1 00 1	0	1007	20	10	130	0,000	0,004	0,029	0,231	30	1,219	1,000	- /	99,9		10-10110-L
												\vdash					
11																	L.
12																	
13												\Box					
14																	
						-			Phase								
	Z2/FS21	68	1265	20	20	203	0,335	0,160	0,291	2,487	95	5,154	1,000	31	54,0	D	K1 - von S - L+G+F
16	Z4/FS41	131	1463	20	20	235	0,559	0,160	0,779	5,176	95	9,023	1,007	55	62,7	D	K4 - von N - L
17 2	Z4/FS42	170	1719	20	20	276	0,617	0,160	1,024	6,788	95	11,195	1,042	70	64,6	D	K4 - von N - G+R
18																	
19	- 1			e e				-					- 3				
									Phase	4							
20 2	Z1/FS14	14	1089	12	5	50	0,281	0,046	0,219	0,712	95	2,138	1,836	24	76,2	E	K41, 42 - BUS
21							-11-2										
22																	
23		-										1					
24												_					
									Phase	5							
)E T			-	-	-				riiase			т т	-	-			
25												\vdash					
26												\vdash					
27												\vdash					
28												\vdash					
29																	
									Phase	6							
30																	l .
31																	
32																	
33																	
34						-											
34			-						≺notenpu	ınkt						-	
34																	
34	Summe:	3237			1	4367											
	Summe: Mittelwert:	3237				4367	0,931								282,8		l li

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag im Prognosefall B (2)

										htsignala		anna ulca le :-					
	Desirelati	VIII Fares				Bewe	rtung de	r Verkeh	rsqualitä	im Kraft	fahrzeu	gverkehr					
		VU Franz	zenburg														
17		Wetzlar	F12	- 01- 0		1100000											
						Hasenp	rad										
	itabschnitt:				a B nur I v												
			EIER Gm			100 1		1000	ese i								
	t _U =	114	[s]	f _{in} =	1,103	[-]	T =	1,0	[h]								w
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS} ,s	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	FI I	[m]	[S]	[-]	1
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 Z	Z1/FS12	295	2000	49	56	1000	0,295	0,500	0,241	5,720	95	9,765	1,000	59	17,6	.A	K2 - von W - G
2 Z	Z1/FS13	878	1878	49	56	939	0,935	0,500	16,863	42,970	95	54,057	1,042	338	91,4	E	K2 - von W - G+R
	Z3/FS32	617	2000	49	49	877	0,703	0,439	1,681	17,543	95	24,627	1,000	148	32,9	В	K5 - von O - G
	Z3/FS33	577	1855	49	49	814	0,709	0,439	1,737	16,626	95	23,523	1,055	149	33.8	В	K5 - von O - G+R
5														1.07,2			
6																	T
7																	
	120					•			Phase	2							
8 Z	Z1/FS11	479	1798	20	20	331	1,446	0,184	75,508	90,676	95	106,781	1,021	654	867,3	F	K3 - von W - L
	Z3/FS31	8	1887	20	10	182	0.044	0.096	0.025	0,255	95	1,110	1,000	7	47.2	С	K6 - von O - L
10	-0.7.00.1		1007	20	10	102	0,037	0,000	0,020	0,200		1,110	1,000		11,2		70110 1
11							-										
12		_										1	_				
13							-								-		T.
14						1	_					+					
14		_							Phase								
4E 7	Z2/FS21	60	1225	20	20	244	0.070	0.404		2,073	OF	4.507	4.000	07	42.0	0	K4 was C L.C.D
	Z4/FS41	68 131	1325 1487	20 20	20	244 274	0,279 0,478	0,184 0,184	0,221 0,550	4,261	95 95	4,507 7,752	1,000 1,007	27 47	43,2 48,8	C	K1 - von S - L+G+R K4 - von N - L
		170	1719	20	20	317				5,586	95			60	50.2	-	
	Z4/FS42	170	1/19	20	20	317	0,537	0,184	0,712	5,586	95	9,583	1,042	DU	50,2	D	K4 - von N - G+R
18							_					1				-	
19									- DI								
20					-			- 1	Phase	4							
20						-	-					-					
21												 					
22																	
23																	
24																	
									Phase	5							
25																	
26																15	
27																	
28																	ř .
29																	
									Phase	6							
30																	
31	- 1															į.	
32																	1
33																	
34	- 1																1
•						•			≺notenpu	ınkt							
	Summe:	3223				4978											
2 FCC 10 AT 1.2	Mittelwert:						0,812								173.4		
gew.																	

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall B (1)

										htsignala							
						Bewe	ertung de	r Verkeh	rsqualitä	t im Kraft	fahrzeu	gverkehr					
		VU Fran:	zenburg														
		Wetzlar															
						Hasenp	fad										
	itabschnitt:				se B mit	OV											
			EIER Gm														
	t _u =	131	[S]	f _{in} =	1,055	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	С	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	i
- 1	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 2	Z1/FS12	295	2000	49	56	870	0,339	0,435	0,278	7,391	95	11,989	1,000	72	25,7	В	K2 - von W - G
	Z1/FS13	709	1943	49	56	845	0,839	0,435	3,424	26,371	95	35,056	1,019	214	47.5	С	K2 - von W - G+R
	Z3/FS32	555	2000	49	49	763	0,727	0,382	1,597	18,881	95	26,229	1,000	157	42,2	С	K5 - von O - G
	Z3/FS33	527	1899	49	49	725	0,727	0,382	1,595	18,007	95	25,183	1,048	158	42.6	С	K5 - von O - G+R
5																	
6				-													
7																	
									Phase:	2						S)	
8 2	Z1/FS11	192	1769	20	20	284	0,677	0,160	1,191	7,772	95	12,487	1,038	78	66,9	D	K3 - von W - L
	Z3/FS31	31		20	10	158	0,196	0,084	0,130	1,180	95	3,018	1,000	18	58,8	D	K6 - von O - L
10																	
11				-													
12																	
13																	
14				-													
						•			Phase	3		•		-			
15 2	Z2/FS21	44	948	20	20	152	0,290	0,160	0,218	1,628	95	3,786	1,000	23	53,6	D	K1 - von S - L+G+R
	Z4/FS41	135	1541	20	20	247	0,546	0,160	0,666	5,187	95	9,039	1,007	55	60,3	D	K4 - von N - L
17 2	Z4/FS42	331	1760	20	20	282	1,173	0,160	27,446	39,491	95	50,119	1,016	306	405,2	F	K4 - von N - G+R
18																	
19																	1
									Phase	4							
20 2	Z1/FS14	8	1053	12	5	48	0,166	0,046	0,105	0,385	95	1,435	1,900	16	67,9	D	K41, 42 - BUS
21																	
22																	
23) and the second
24																	1
									Phase	5							
25										-							
26										-						12	T.
27																	
28																	
29																	1
						,			Phase	6							
30										-							l .
31										-						12	1
32																	
33										-							
34																	
	-					•			≺notenpu	ınkt		•					
	Summe:	2827				4375					1						
gew.	Mittelwert:		ī ī				0,741			ii i					87,4		
							1,173	- 1						306	405,2	F	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag im Prognosefall B (2)

						<u></u>				htsignala							
						Bewe	rtung de	r Verkeh	rsqualitä	im Kraft	fahrzeug	gverkehr					
		VU Franz	zenburg														
		Wetzlar															
						Hasenp	fad										
	itabschnitt:				se B nur	IV											
E			EIER Gm														
	t _u =	114	[s]	f _{in} =	1,055	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	1
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 Z	Z1/FS12	295	2000	49	56	1000	0,295	0,500	0,226	5,705	95	9,744	1,000	58	17,5	.A	K2 - von W - G
2 Z	Z1/FS13	709	1943	49	56	972	0,730	0,500	1,632	19,308	95	26,739	1,019	163	28,5	В	K2 - von W - G+R
3 Z	Z3/FS32	555	2000	49	49	877	0,633	0,439	0,992	14,648	95	21,121	1,000	127	28,9	В	K5 - von O - G
	Z3/FS33	527	1900	49	49	833	0,632	0,439	0,990	13,955	95	20,273	1,048	127	29,1	В	K5 - von O - G+R
5																	
6	- 1																
7															, and		
10.0									Phase:	2						S)	
8 Z	Z1/FS11	192	1769	20	20	326	0,589	0,184	0,804	6,368	95	10,636	1,038	66	51,4	D	K3 - von W - L
	Z3/FS31	31	1887	20	10	182	0,170	0,096	0,109	1,011	95	2,711	1,000	16	49,5	С	K6 - von O - L
10																	
11																	7
12												i i					
13																	
14				-													
									Phase	3							
15 Z	Z2/FS21	44	948	20	20	175	0,252	0,184	0,180	1,372	95	3,353	1,000	20	43,5	С	K1 - von S - L+G+R
16 Z	Z4/FS41	135	1557	20	20	287	0,471	0,184	0,488	4,306	95	7,816	1,007	47	47,7	С	K4 - von N - L
17 Z	Z4/FS42	331	1760	20	20	324	1,021	0,184	11,610	22,091	95	30,041	1,016	183	175,4	F	K4 - von N - G+R
18																	
19																	
									Phase	4				- "			
20																	
21				-													
22																	
23																	
24				-													
									Phase	5							
25								1									
26				-													
27																	
28																	
29				-													
						•			Phase	3		• •					•
30										-							
31				-													
32																	
33															-		
34																	
		_							≺notenpu	nkt							-
	Summe:	2819				4976											
gew.	Mittelwert:						0,646								47,7		
							1,021	1.7									

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A (1)

							Kn	otennuni	ct mit Lic	htsignala	nlane						
						Bewe				t im Kraft		averkehr					
	Projekt:	VU Franz	renbura				1										
		Wetzlar															
Kno	1,000,000,000	0.0000000000000000000000000000000000000	rankfurte	r Str S	nilhurastr	Hasenpt	fad										
	tabschnitt:																
					i rogilosc	rium rivinit s	-6.80										
					4.400	Ira I	-	40.1	r								
	t _U =	90	[s]	f _{in} =	7.00	[-]	T =		[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	C	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	-[-]	[Kfz]	[Kfz]	[%]	[Kfz]	FI	[m]	[s]	[-]	1
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	1.7	(=)1						- (-)	Phase								
1 Z	1/FS12	400	2000	31	47	1067	0.375	0.533	0.352	6,185	95	10.392	1,000	62	13.4	A	K2 - von W - G
	1/FS13	693	1913	31	47	1020	0.679	0.533	1,465	14.142	95	20.502	1.045	129	20.5	В	K2 - von W - G+R
	3/FS32	600	2000	31	29	667	0,900	0,333	9,116	23,401	95	31,583	1,000	189	77,8	E	K5 - von O - G
	3/FS33	561	1837	31	29	612	0,916	0,333	10,454	23,914	95	32,185	1,051	203	90,3	Ē	K5 - von O - G+R
5	.0/1 000	301	1001	VI.	20	012	0,510	0,000	10,404	20,014	33	52,103	1,001	203	30,3	_	10 - 1011 O - O 1R
6							_					\vdash					
7						-						 					
1			1/						Phase	2							
8 Z	1/5044	435	4040	22	00	483	0.000	0.007			OF.	25 507	4 040	155	90.3		1/2 year 18/ 1
	1/FS11		1812	22	23		0,900	0,267	7,850	18,344	95	25,587	1,012			E	K3 - von W - L
	3/FS31	8	1887	22	5	126	0,064	0,067	0,038	0,225	95	1,028	1,000	6	40,4	С	K6 - von O - L
10						\vdash											
11																	
12																	
13										-							Y
14																	1
									Phase								
15 Z	2/FS21	66	1431	9	7	127	0,519	0,089	0,643	2,219	95	4,738	1,000	28	57,4		K1 - von S - L+G+R
16 Z	4/FS41	137	1987	9	8	199	0,689	0,100	1,438	4,749	95	8,434	1,007	51	65,2	D	K4 - von N - L+G
17 Z	4/FS42	133	1947	9	32	714	0,186	0,367	0,129	2,389	95	5,004	1,027	31	20,0	В	K4,14 - von N - R
18																	
19																	
							•		Phase	4							
20 Z	1/FS11	14	1089	5	- 5	73	0,193	0,067	0,134	0,465	95	1,618	1,836	18	46,3	С	K 41, 42 - BUS
21																1	
22												i i					
23																	
24																	
		-							Phase	5						-	
25	1		1			1	1	1	,,,,,,,				1		1		
26												\vdash				9	
27					-	 						1				k	
28	-														-		
29						 						\vdash					
29									Phase								
20 1	-	г г	-		-	1		- 1	rnase	1		т т	1	- 1	-		
30												\vdash					
31						-						\vdash					
32																	
33												\vdash					
34										2010.42							
									≺notenpu	ınkt			_				
- HO 100 - 1	Summe:	3047				5088										,	
	Mittelwert:		Ш				0,730								56,6		
- 1	Maximum:						0,916		- 00					203	90,3	E	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A (2)

							Kn	otenpuni	kt mit Lici	htsignala	nlage						
						Bewe			rsqualität			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kr	notenpunkt:	KP 401: F	rankfurte	r Str S	pilburgstr	Hasenpf	ad										
Ze	itabschnitt:																
			EIER Gml														
	t _u =		[s]	f _{in} =	1,103	[-1	Τ=	1.0	[h]								
lfd.	Bez.	178720			715 505251					N .	-	T 51	-			0017	Pomorlainaon
	Dez.	q _{Kfz}	q_s	t _F	ţ _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS} ,s	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase '	1		10					
1	Z1/FS12	400	2000	36	58	1311	0,305	0,656	0,253	4,559	95	8,170	1,000	49	7,4	A	K2 - von W - G
2	Z1/FS13	693	1913	36	58	1254	0,553	0,656	0,776	10,133	95	15,517	1,045	97	10,6	A	K2 - von W - G+R
3	Z3/FS32	600	2000	36	32	733	0,818	0,367	3,895	17,466	95	24,534	1,000	147	44,9	С	K5 - von O - G
	Z3/FS33	561	1846	36	32	677	0,829	0,367	4,253	17,013	95	23,989	1,051	151	48,5	С	K5 - von O - G+R
5																	1
6																	
7					-												
1								-	Phase :	2							
8	Z1/FS11	435	1812	27	29	604	0,720	0,333	1,836	11,376	95	17,080	1,012	104	37,3	С	K3 - von W - L
	Z3/FS31	433	1887	27	5	126	0,720	0,333	0.038	0.225	95	1.028	1,012	6	40.4	C	K6 - von O - L
	Z3/F33 I	0	1007	21	J	120	0,004	0,007	0,030	0,223	90	1,020	1,000	U	40,4		NO - VOIT O - L
10			_	_			_					\vdash				-	
11																	
12																	
13																	
14																	
									Phase 3								
	Z2/FS21	66	1431	11	7	127	0,519	0,089	0,643	2,219	95	4,738	1,000	28	57,4	D	K1 - von S - L+G+F
	Z4/FS41	137	1987	11	8	199	0,689	0,100	1,438	4,749	95	8,434	1,007	51	65,2	D	K4 - von N - L+G
	Z4/FS42	133	1987	11	43	971	0,137	0,489	0,089	1,910	95	4,248	1,027	26	12,9	A	K4,14 - von N - R
18																	
19																	
									Phase -	4							
20																	
21	4												1				
22																	
23																	
24			-				_										
									Phase :	5							
25		1	- 1			1	- 1	1	, 11436			Г		-	-		
26		-	-														
27															-		
															-		
28												\vdash					
29																	
									Phase	6							
30																	
31										•							T.
32																	7
33																	II.
34	-																1
									≺notenpu	ınkt							
	Summe:	3033				6003											
gew.	Mittelwert:						0,634								31,5		
							0,829								- 17		

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A (1)

							Kn	otenpun	kt mit Lic	htsignala	ınlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
K	notenpunkt:	KP 401: F	rankfurte	r Str S	pilburgstr	Hasenpt	fad										
Z	eitabschnitt:					sefall A mit											
-000	Bearbeiter:	HEINZ+F			<u> </u>		200000										
	t _u =		[s]	f _{in} =	1,055	f-1	Τ=	1.0	[h]								
16 -1		7.79.50			7.50000000		_										Description
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	Z1/FS12	497	2000	34	46	1044	0,476	0,522	0,502	8,402	95	13,304	1,000	80	15,4	A	K2 - von W - G
2	Z1/FS13	427	1954	34	46	1020	0.418	0.522	0,394	6.921	95	11,370	1.023	70	14.5	Α	K2 - von W - G+R
3	Z3/FS32	526	2000	34	34	778	0.676	0,389	1,222	12,126	95	18,015	1.000	108	28,5	В	K5 - von O - G
4	Z3/FS33	498	1916	34	34	745	0.668	0.389	1,174	11,454	95	17,178	1.038	107	28.4	В	K5 - von O - G+R
5				~ .		. , , ,	0,000	0,000	.,	,		11,110	1,000	, 31	,,		
6			-										3			9	
7			-			 	-										1
- 1	ļ								Phase:	2							
8	Z1/FS11	162	1776	12	19	395	0,411	0,222	0,380	3,846	95	7,163	1,033	44	33,4	В	K3 - von W - L
9	Z3/FS31	29	1887	12	5	126	0,411	0,222	0,380	0.847	95	2,404	1,033	14	33,4 44.4	С	
	Z3/FS31	29	1887	12	5	126	0,231	0,067	0,160	0,847	95	2,404	1,000	14	44,4	Ü	K6 - von O - L
10																	
11																00	
12																	
13										_						X.	
14	ř.																1
									Phase:	3							
15	Z2/FS21	43	1278	16	7	114	0,379	0,089	0,327	1,341	95	3,299	1,000	20	49,0	U	K1 - von S - L+G+F
16	Z4/FS41	135	1957	16	10	239	0,564	0,122	0,718	3,900	95	7,239	1,007	44	48,0	С	K4 - von N - L+G
17	Z4/FS42	304	1977	16	29	659	0,461	0,333	0,472	6,460	95	10,758	1,012	65	26,2	В	K4,14 - von N - R
18										_							
19	V			ė į									- 3				
	•								Phase	4							
20	Z1/FS11	8	1119	5	5	75	0.107	0.067	0.064	0.252	95	1.100	1.788	12	42.6	С	K41, 42 - BUS
21	21/1011	Ť	1110		-	10	0,101	0,001	0,001	0,202	- 00	1,100	1,100	12	72,0		1411, 12 - 500
22	h	1				1				-			_	h	-	-	
23						 										ļ.	
24			-			 	_										
24	L								Phone	_				L			
0E	-		-		-	1			Phase					-	-	r.	
25						-				-				-		4	
26	ļ													 			
27			7/							l,							
28																l.	
29	Ž.																1
									Phase	6							
30																	
31										-							Ţ.
01																	
32																Ţ.	
32												-					
32 33																11	
32 33	2								Knotenni	ınkt							
32 33	Qumme	2620				5104			Knotenpu	ınkt							
32 33 34	Summe:	2629				5194	0,537		Knotenpu	ınkt					25,3		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A (2)

							Kne	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe	ertung de					gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kno	tenpunkt:	KP 401: F	rankfurte	r Str St	oilburgstr	- Hasenp	fad										
Zeit	tabschnitt:	Nachmitta	aasspitze	- Planun	a Proano:	sefall A nu	rIV										
В	earbeiter:	HEINZ+F															
	t _u =		[s]	f _{in} =	1,055	f-1	Τ=	1,0	[h]								
16 -1		175000			A15000000			1000000									Description
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 Z	1/FS12	497	2000	40	54	1222	0,407	0,611	0,375	6,805	95	11,216	1,000	67	10,2	A	K2 - von W - G
2 Z	1/FS13	427	1954	40	54	1194	0.358	0.611	0.302	5,615	95	9,622	1.023	59	9.6	A	K2 - von W - G+R
	3/FS32	526	2000	40	38	867	0,607	0,433	0,881	10,992	95	16,599	1.000	100	23,3	В	K5 - von O - G
	3/FS33	498	1918	40	38	831	0.599	0.433	0.851	10,380	95	15,829	1.038	99	23.2	В	K5 - von O - G+R
5		.50				551	0,000	0,.00	0,001	.0,000		,0,020	.,	30	,2		
6							-									9	
7			-				-+								-		
-	-								Phase:	2							
8 Z	1/FS11	162	1776	15	19	395	0,411	0,222	0,380	3,846	95	7,163	1,033	44	33.4	В	K3 - von W - L
	3/FS31	29	1887	15	5	126	0,411	0,222	0,380	0.847	95	2,404	1,033	14	44.4	С	K6 - von O - L
	ンバンショ	29	100/	10	0	120	0,231	0,007	0,100	0,047	90	2,404	1,000	14	44,4	C	NO - VOIT O - L
10																	
11																	
12																	
13																	
14																	
									Phase:								Water Control
	2/FS21	43	1278	19	11	170	0,252	0,133	0,181	1,145	95	2,954	1,000	18	38,8	С	K1 - von S - L+G+R
	4/FS41	135	1957	19	12	283	0,478	0,144	0,502	3,603	95	6,813	1,007	41	41,8	U	K4 - von N - L+G
17 Z	4/FS42	304	1977	19	31	703	0,433	0,356	0,418	6,206	95	10,419	1,012	63	24,2	В	K4,14 - von N - R
18																	
19																	1
									Phase -	4							
20																	II.
21				-			\neg										
22																	
23																	
24							-										
_ 1									Phase	5							
25			- 1			1								- 1			
26																	
27		-						-									
							_	-									
28																8	
29																	
00								-1	Phase	0					- 1		
30																	
31																	
32																	
33										_							
34																	1
									≺notenpu	ınkt							
	Summe:	2621				5790											
gew. I	Mittelwert:		1		T T		0,478								20,7		
	Maximum:		0 9				0,607							100	44.4	С	

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B (1)

							Kn	otenpuni	kt mit Lic	htsignala	ınlage						
						Bewe	rtung de	r Verkeh	rsqualität	t im Kraft	fahrzeu	gverkehr					
	Projekt:		enburg														
	Stadt:	Wetzlar															
K	notenpunkt:	KP 401: F	rankfurte	r Str S	pilburgstr	Hasenpf	fad										
Z	eitabschnitt:																
			EIER Gm		-												
	t _u =		[s]	f _{in} =	1,103	[-]	T =	1.0	[h]								
lfd.	Bez.	0.702.0			715/303210					NI	0	No.	4	1	1901	0014	Bemerkungen
Nr.	Dez.	q _{Kfz}	qs	t _F	ţ _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS} ,s	fsv	Ls	t _{vv}	QSV	Demerkungen
INI.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	Z1/FS12	400	2000	31	47	1067	0,375	0,533	0,352	6,185	95	10,392	1,000	62	13,4	A	K2 - von W - G
2	Z1/FS13	773	1878	31	47	1002	0,772	0,533	2,694	18,021	95	25,200	1,048	158	26,3	В	K2 - von W - G+R
3	Z3/FS32	617	2000	31	29	667	0,926	0,333	12,149	27,020	95	35,811	1,000	215	94,5	Е	K5 - von O - G
4	Z3/FS33	577	1834	31	29	611	0,944	0,333	13,912	27,943	95	36,883	1,055	233	111,1	Ē	K5 - von O - G+R
5				- A-50-50	-		-1	-,		,	0.5050		.,				2.11
6	V .			ě .													-
7												1					
	ļ		N/						Phase:	2							
8	Z1/FS11	479	1798	22	23	479	0,999	0,267	18,366	30,338	95	39,653	1,021	243	170,9	E	K3 - von W - L
9	Z3/FS31	8	1887	22	5	126	0,064	0,067	0,038	0,225	95	1,028	1,000	6	40,4	С	K6 - von O - L
10												\Box					
11	Í																
12																	
13																	T
14																	
									Phase	3							
15	Z2/FS21	68	1380	9	7	123	0,554	0,089	0,747	2,376	95	4,982	1,000	30	61,2	D	K1 - von S - L+G+F
16	Z4/FS41	137	1987	9	8	199	0,689	0,100	1,438	4,749	95	8,434	1,007	51	65,2	D	K4 - von N - L+G
17	Z4/FS42	164	1916	9	32	702	0,233	0,367	0,173	3,013	95	5,949	1,044	37	20,6	В	K4,14 - von N - R
18															•		
19	2											\vdash					
10									Phase	1				-			
20	Z1/FS11	14	1089	5	5	73	0,193	0,067	0,134	0.465	95	1,618	1,836	18	46.3	С	K 41, 42 - BUS
21	ZIIFSII	14	1009		J	7.5	0,195	0,007	0,134	0,400	30	1,010	1,000	10	40,5	C	N 41, 42 - DO3
22		-		-		-											ń.
	9	-															
23										-		\vdash				4	
24									Disease	_							
0.5				_					Phase	0							
25										_		\vdash					
26																	1
27			l _i														
28										-							Ţ.
29	î î																
									Phase	6							
																	TI .
30				ē .													1
	1	_															
30 31 32																	T
31 32																	
31 32 33													2 3				
31 32 33									(notenni	ınkt							
31 32 33	Qummo	2007				E0.40			Knotenpu	ınkt							
31 32 33 34	Summe:	3237				5048	0,777		Knotenpu	ınkt					76,5		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B (2)

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kı	notenpunkt:					Hasenpt											
Zε	eitabschnitt:	Vormittag	sspitze - l	Planung	Prognose	fall B nur l	V										
	Bearbeiter:	HEINZ+F	EIER Gm	bН													
	t _o =	90	[s]	f _{in} =	1,103	[-]	T =	1.0	[h]								
lfd.	Bez.	q _{Kfz}	q_s	t _F	ţ _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	002.	[Kfz/h]	(Kfz/h)			[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	- Verigo-grant	- Donnonnangon
	640		-	[S]	[s]											[-]	(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9} Phase	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
1 I	Z1/FS12	400	2000	36	58	1311	0,305	0,656	0,253	4,559	95	8,170	1,000	49	7,4	۸	K2 - von W - G
	Z1/FS13	773	1878	36	58	1231	0,505	0,656		12.428	95	18,390	1.048	116	12.3	A	K2 - von W - G+R
	Z3/FS32	617	2000	36	32	733	0,841	0,050	1,115 4,887	19,014	95	26,389	1,046	158	50.1	D	K5 - von O - G
	Z3/FS32 Z3/FS33	577	1842	36	32	675	0,841	0,367	5.494	18,797	95	26,389	1,000	165	55,6	D	K5 - von O - G+R
	といけつここ	5//	1042	30	32	0/5	0,004	0,307	5,494	10,191	90	20,130	1,000	100	33,6	U	NJ - VOII O - G+R
5															-		
7																	
1									Phase:	2							
8	Z1/FS11	479	1798	27	29	599	0,799	0,333	3,221	14,104	95	20,456	1,021	125	46,6	С	K3 - von W - L
	Z3/FS31	4/9	1887	27	5	126	0,799	0,333	0.038	0.225	95	1.028	1,021	125	40,0	C	K6 - von O - L
	Z3/F33 I	٥	1001	21	0	120	0,004	0,007	0,030	0,225	90	1,020	1,000	0	40,4	C	KO - VOIT O - L
10												_				A .	
11		-	-			-	_					-					
12	,											-					
13						_	_					-					
14																	
75. 1	70/5004	0.01	1000		-	100	0.554	0.000	Phase		0.5	1 4 0001	1.000	0.01	01.0	-	
	Z2/FS21	68	1380	11	- 1	123 196	0,554	0,089		2,376	95	4,982	1,000	30	61,2	D	K1 - von S - L+G+F
	Z4/FS41	137	1961	11	8 37		0,699	0,100	1,506	4,820	95	8,533	1,007	52	66,8	D	K4 - von N - L+G
	Z4/FS42	164	1711	11	3/	722	0,227	0,422	0,167	2,787	95	5,610	1,044	35	17,4	Α	K4,14 - von N - R
18				_		_	_			_		\vdash				A .	
19						11			Disease								
00		_			-		_	_	Phase	4			-	_	_		
20						_	_			_		\vdash				A .	
21			-			-											
22	9					—											
23										-						8	
24									Dhaa								20
OF I	- 1	-	-		-	1			Phase	0		_			-	15	
25 26															- 1	A .	
			-			-											
27							-										
28																	
29									Disease								
00	-	-			_				Phase	ь						is .	
30																	
31																	
32			7														
33										_							
34																	
									Knotenpu	ınkt							
	Summe:	3223				5717											
gew	. Mittelwert:		11		J. I		0,674				Ī				35,5		
	Maximum:		V				0,854		- 0	0				165	66,8	D	

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B (1)

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					_
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kno	otenpunkt:	KP 401: F	rankfurte	r Str St	oilburgstr	- Hasenpt	fad										
Zeit	tabschnitt:	Nachmitta	agsspitze	- Planun	g Progno	sefall B mit	tÕV										
E	Bearbeiter:	HEINZ+F															
	t _u =		[s]	f _{in} =	1,055	[-1	T =	1,0	[h]								
lfd.	Bez.	175000			A15000000					N .	-	1				0017	Domorlaingon
	Dez.	q _{Kfz}	q_s	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	ţ _V	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
0.000									Phase	1							
1 Z	1/FS12	540	2000	34	46	1044	0,517	0,522	0,597	9,433	95	14,627	1,000	88	16,1	A	K2 - von W - G
2 Z	1/FS13	464	1943	34	46	1015	0,457	0,522	0,465	7,746	95	12,452	1,029	77	15,1	A	K2 - von W - G+R
3 Z	3/FS32	555	2000	34	34	778	0,714	0,389	1,483	13,219	95	19,368	1,000	116	30,1	В	K5 - von O - G
4 Z	3/FS33	527	1899	34	34	739	0,714	0,389	1,482	12,626	95	18,635	1,048	117	30,5	В	K5 - von O - G+R
5																	
6						-											7
7					-												
-									Phase:	2						k.	
8 Z	1/FS11	192	1769	12	19	393	0,489	0,222	0,527	4,715	95	8,387	1,038	52	35.4	С	K3 - von W - L
	3/FS31	31	1887	12	5	126	0.246	0.067	0,175	0.910	95	2.523	1,000	15	44.9	C	K6 - von O - L
10	.5/1 55 1	31	1007	12		120	0,240	0,007	0,175	0,310	30	2,020	1,000	13	44,3		NO - VOII O - L
												\vdash				A.	
11																	
12			/							/		\square					
13												-					
14																	1
									Phase								
	2/FS21	44	1280	16	7	114	0,387	0,089	0,339	1,377	95	3,361	1,000	20	49,4	С	K1 - von S - L+G+F
	4/FS41	141	1945	16	10	238	0,593	0,122	0,811	4,147	95	7,590	1,006	46	49,7	С	K4 - von N - L+G
	4/FS42	325	1967	16	34	765	0,425	0,389	0,405	6,353	95	10,615	1,017	65	22,0	В	K4,14 - von N - R
18																	
19																	1
									Phase -	4							
20 Z	1/FS11	8	1119	5	5	75	0,107	0,067	0,064	0,252	95	1,100	1,788	12	42,6	С	K41, 42 - BUS
21				-						-						1	
22																	
23																	
24																	
		-							Phase	5							
25			- 1					7	1,1,0,00			1		- 1			
26							-					\vdash					
27			-			 	_										
28								-				\vdash			-		
																8	
29						J			Disease								
	-								Phase	0					-		
30																	
31																	
32																	
33										_							
34																	
									Knotenpu	ınkt							
	Summe:	2827				5285											
gew. I	Mittelwert:		īi -		1		0,568	8		ii = =					26,0		
	Maximum:)) <u> </u>				0.714)				117	49,7	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 401 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B (2)

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
K	notenpunkt:	KP 401: F	rankfurte	r Str St	pilburgstr	Hasenpt	fad										
Z	eitabschnitt:					sefall B nu											
	Bearbeiter:	HEINZ+F															
	t _u =		ſsì	f _{in} =	1,055	[-]	Τ=	1.0	[h]								
lfd.	Bez.	7.7920			7.50000000					N .	_	T 51			-	0017	Pomorlaingon
	Dez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1		10					
1	Z1/FS12	540	2000	40	54	1222	0,442	0,611	0,436	7,627	95	12,298	1,000	74	10,6	A	K2 - von W - G
2	Z1/FS13	464	1943	40	54	1187	0,391	0,611	0,350	6,276	95	10,514	1,029	65	10,0	A	K2 - von W - G+R
3	Z3/FS32	555	2000	40	38	867	0,640	0,433	1,028	11,911	95	17,747	1,000	106	24,3	В	K5 - von O - G
4	Z3/FS33	527	1900	40	38	823	0.640	0.433		11,358	95	17,057	1.048	107	24.5	В	K5 - von O - G+R
5					-		-,	-,	1,			,					
6	2																
7		1		-												1	
-									Phase:	2							
8	Z1/FS11	192	1769	15	19	393	0,489	0,222	0,527	4,715	95	8,387	1,038	52	35,4	С	K3 - von W - L
9	Z3/FS31	31	1887	15	5	126	0,469	0,222	0,327	0.910	95	2.523	1,000	15	44.9	C	K6 - von O - L
	Z3/F33 I	31	1007	10	Э.	120	0,240	0,007	0,175	0,910	90	2,323	1,000	10	44,9	C	KO - VOIT O - L
10																	
11																	1
12																	
13																	
14																	
									Phase:	3							
15	Z2/FS21	44	1280	19	11_	171	0,258	0,133		1,173	95	3,005	1,000	18	38,9	С	K1 - von S - L+G+F
16	Z4/FS41	141	1945	19	12	281	0,502	0,144		3,806	95	7,106	1,006	43	42,6	С	K4 - von N - L+G
17	Z4/FS42	325	1967	19	31	699	0,465	0,356	0,479	6,751	95	11,145	1,017	68	24,9	В	K4,14 - von N - R
18										-							
19	4															1	1
		-	•						Phase	4		•					
20								1									
21	7	-										\vdash					
22																	
23		-															
24		-				 	_					\vdash				8	
24									Phase	5			-				
ΩF.	1	1	-		-	1	-	-	rnase	1		г г			-		
25				_		-						\vdash		-		4	
26																	
27			7/							Z.							
28																l.	
29																	1
									Phase	6							
30										-							
31	<u> </u>																Ţ.
32																	
33									1							Ţ.	
34	2																
		-				_			Knotenpu	ınkt				-			
	6	2819	1			5770			I								
dev	Summe: /. Mittelwert:	2019					0,513								21,5	*	

Belastungsfall ohne ÖV-Phase

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag im Bestand

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Napazi	täten der l	LINZEIS	rome		
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p ₃
	1 (2)	740	554	1,000	554	0,553	0,447	0,447
A	2 (1)	()	1800	1,000	1800	0,394	1,000	
	3 (1)	0	1600	1,000	1600	0,098	1,000	
	4 (4)	1814	95	1,000	43	0,000		
В	5 (3)	1814	86	1,000	38	0,000	1,000	0,447
	6 (2)	773	467	1,000	467	0,000	1,000	
	7 (2)	851	488	1,000	488	0,000	1,000	0,447
C	8 (1)		1800	1,000	1800	0,418	1,000	
[9 (1)	301	831	1,000	831	0,417	1,000	***
	10 (4)	1814	95	1,000	43	5,390		-
D	11 (3)	1892	77	1,000	34	0,000	1,000	0,447
1	12 (2)	740	486	1,000	486	0,647	0,353	***

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	301	1,016	554	545	0,553	244	14,7	В
Α	2	694	1,021	1800	1763	0,394	1069	0,0	Α
	3	157	1,000	1600	1600	0,098	1443	0,0	Α
	4	(***	(man)		****	31000	
В	5			122					
	6							-	
	7				>		***		
С	8	740	1,017	1800	1770	0,418	1030	0,0	Α
	9	338	1,025	831	810	0,417	472	7,6	Α
	10	227	1,012	43	42	5,390	-185	8090,2	F
D	11	1,000			3444				
	12	310	1,014	486	479	0,647	169	21,0	С
Α	2+3	851	1,017	1760	1730	0,492	879	0,0	Α
В	4+5+6	244		***					
С	7+8+9	1078	1,019	1800	1766	0,611	688	5,2	Α
D	10+11	227	1,012	43	42	5,390	-185	8090,2	F
			erreicl	hbare Qualität	sstufe QSV _{c2}				F

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Bestand

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Kapazı	täten der	Einzelsi	rome		
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p
	1 (2)	587	659	1,000	659	0,443	0,557	0,557
A	2 (1)		1800	1,000	1800	0,350	1,000	
- [3 (1)	0	1600	1,000	1600	0,021	1,000	
	4 (4)	1516	143	1,000	80	0,000		
В	5 (3)	1516	130	1,000	73	0,000	1,000	0,557
	6 (2)	638	551	1,000	551	0,000	1,000	***
	7 (2)	654	610	1,000	610	0,000	1,000	0,557
C	8 (1)		1800	1,000	1800	0,330	1,000	
	9 (1)	291	841	1,000	841	0,432	1,000	***
	10 (4)	1516	143	1,000	80	2,640		-
D	11 (3)	1532	127	1,000	71	0,000	1,000	0,557
1	12 (2)	587	586	1,000	586	0,513	0,487	

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,} [-]	Kapazität C _{PE,} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	291	1,002	659	657	0,443	366	9,8	Α
Α	2	621	1,014	1800	1776	0,350	1155	0,0	Α
	3	33	1,000	1600	1600	0,021	1567	0,0	Α
	4	·			-		***	1	
В	5		***		5444		***		
	6	-							
	7		***		3	-	***	(***)	
С	8	587	1,012	1800	1779	0,330	1192	0,0	Α
	9	360	1,010	841	833	0,432	473	7,6	Α
	10	209	1,007	80	79	2,640	-130	3069,6	F
D	11	1,444			(Mark		***	***	
	12	300	1,002	586	584	0,513	284	12,6	В
Α	2+3	654	1,013	1789	1766	0,370	1112	0,0	Α
В	4+5+6	240		***		-			
С	7+8+9	947	1,011	1800	1780	0,532	833	4,3	Α
D	10+11	209	1,007	80	79	2,640	-130	3069,6	F
			erreic	hbare Qualität	sstufe OSV			22 0,0 3 7,6 50 3069,6 	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag im Prognosefall A

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Napazi	täten der l	Einzeisi	rome		
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p
	1 (2)	800	517	1,000	517	0,841	0,159	0,159
A	2 (1)	()	1800	1,000	1800	0,402	1,000	
	3 (1)	0	1600	1,000	1600	0,079	1,000	
	4 (4)	1994	75	1,000	12	0,000		
В	5 (3)	1994	67	1,000	11	0,000	1,000	0,159
	6 (2)	767	470	1,000	470	0,000	1,000	
	7 (2)	830	500	1,000	500	0,000	1,000	0,159
C	8 (1)		1800	1,000	1800	0,451	1,000	
[9 (1)	427	712	1,000	712	0,673	1,000	
	10 (4)	1994	75	1,000	12	18,985		-
D	11 (3)	2057	61	1,000	10	0,000	1,000	0,159
1	12 (2)	800	451	1,000	451	0,795	0,205	***

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,} [Pkw-E/h]	Kapazität C, [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	427	1,018	517	508	0,841	81	40,6	D
A	2	704	1,027	1800	1753	0,402	1049	0,0	Α
	3	126	1,000	1600	1600	0,079	1474	0,0	Α
	4			***	2444	3,000	***	3 ***	
В	5						***	() () () () () () () () () ()	
	6							-	
	7						***	(***)	
C	8	800	1,016	1800	1772	0,451	972	0,0	Α
	9	468	1,024	712	695	0,673	227	15,6	В
	10	221	1,019	12	12	18,985	-209	33004,6	F
D	11								
	12	352	1,020	451	443	0,795	91	37,4	D
Α	2+3	830	1,023	1767	1728	0,480	898	0,0	Α
В	4+5+6			***				3 3	
С	7+8+9	1268	1,019	1800	1767	0,718	499	7,2	Α
D	10+11	221	1,019	12	12	18,985	-209	33004,6	F
			erreic	nbare Qualität	sstufe OSV-			F	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Prognosefall A

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

_		MATERIAL PROPERTY AND ADDRESS OF THE PARTY AND	Kapazi					
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p ₃
	1 (2)	601	648	1,000	648	0,547	0,453	0,453
A	2 (1)	-	1800	1,000	1800	0,370	1,000	
	3 (1)	0	1600	1,000	1600	0,021	1,000	
	4 (4)	1627	123	1,000	56	0,000		
В	5 (3)	1627	111	1,000	50	0,000	1,000	0,453
	6 (2)	675	526	1,000	526	0,000	1,000	2.444
	7 (2)	692	585	1,000	585	0,000	1,000	0,453
C	8 (1)	-	1800	1,000	1800	0,338	1,000	
	9 (1)	351	781	1,000	781	0,536	1,000	****
	10 (4)	1627	123	1,000	56	5,432	***	-
D	11 (3)	1644	109	1,000	49	0,000	1,000	0,453
- [12 (2)	601	576	1,000	576	0,742	0,258	***

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	351	1,010	648	642	0,547	291	12,3	В
Α	2	658	1,013	1800	1777	0,370	1119	0,0	Α
500,00	3	34	1,000	1600	1600	0,021	1566	0,0	Α
	4						***	3.000	
В	5		12.44	100	5444		***	(1 <u>111</u>)	
	6							-	
	7	-	***		5	-	***	(***)	
С	8	601	1,012	1800	1779	0,338	1178	0,0	Α
	9	414	1,012	781	772	0,536	358	10,0	В
	10	299	1,012	56	55	5,432	-244	8121,6	F
D	11			***				***	
	12	423	1,010	576	570	0,742	147	23,8	С
Α	2+3	692	1,012	1789	1768	0,391	1076	0,0	Α
В	4+5+6	2440		4440					
С	7+8+9	1015	1,012	1800	1779	0,571	764	4,7	Α
D	10+11	299	1,012	56	55	5,432	-244	8121,6	F
1.5	-51		erreic	hbare Qualität	setufe OSV				F

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag im Prognosefall B

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Kapazi	täten der	Einzelst	röme		
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p
	1 (2)	800	517	1,000	517	1,008	0,000	0,000
A	2 (1)	-	1800	1,000	1800	0,402	1,000	
	3 (1)	0	1600	1,000	1600	0,079	1,000	
	4 (4)	2076	67	1,000	0	0,000		
В	5 (3)	2076	59	1,000	0	0,000	1,000	0,000
	6 (2)	767	470	1,000	470	0,000	1,000 1,000 1,000	***
	7 (2)	830	500	1,000	500	0,000	1,000	0,000
C	8 (1)		1800	1,000	1800	0,451	1,000	1.000
	9 (1)	509	644	1,000	644	0,893	1,000	***
	10 (4)	2076	67	1,000	0	max		
D	11 (3)	2139	54	1,000	0	0,000	1,000	0,000
1	12 (2)	800	451	1,000	451	0,945	0,055	***

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,} [-]	Kapazität C _{PE,} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	509	1,023	517	505	1,008	-4	127,9	F
Α	2	704	1,027	1800	1753	0,402	1049	0,0	Α
2000	3	126	1,000	1600	1600	0,079	1474	0,0	Α
	4	5.0000)						3:000)3	
В	5								
	6	-						-	
	7		***			-	***	(***)	
С	8	800	1,016	1800	1772	0,451	972	0,0	Α
	9	560	1,028	644	627	0,893	67	45,5	E
	10	286	1,022	0	0	max	-286	max	F
D	11						***		
	12	418	1,020	451	442	0,945	24	86,1	Ε
Α	2+3	830	1,023	1767	1728	0,480	898	0,0	Α
В	4+5+6	250		444					
С	7+8+9	1360	1,021	1800	1764	0,771	404	8,8	Α
D	10+11	286	1,022	0	0	max	-286	max	F
100	-	-	erreic	hbare Qualität	sstufe OSV				F

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag im Prognosefall B

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Kapazi	täten der	Einzelst	röme		
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀	staufreier Zustand p _x bzw. p
	1 (2)	601	648	1,000	648	0,676	0,324	0,324
A	2 (1)	-	1800	1,000	1800	0,370	1,000	
	3 (1)	0	1600	1,000	1600	0,021	1,000	
	4 (4)	1708	110	1,000	36	0,000		
В	5 (3)	1708	99	1,000	32	0,000	1,000	0,324
	6 (2)	675	526	1,000	526	0,000	1,000	
	7 (2)	692	585	1,000	585	0,000	1,000	0,324
C	8 (1)	-	1800	1,000	1800	0,338	1,000	
- 1	9 (1)	432	708	1,000	708	0,709	1,000	***
	10 (4)	1708	110	1,000	36	10,384		-
D	11 (3)	1725	97	1,000	31	0,000	1,000	0,324
1	12 (2)	601	576	1,000	576	0,903	0,097	***

Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,} [-]	Kapazität C _{PE,} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts- stufe QSV
	1	432	1,015	648	639	0,676	207	17,2	В
Α	2	658	1,013	1800	1777	0,370	1119	0,0	Α
500,00	3	34	1,000	1600	1600	0,021	1566	0,0	Α
	4						***	3.000	
В	5		12.44	100	5444		***	(1 <u>111</u>)	
	6							-	
	7	-	***		5	-	***	(***)	
С	8	601	1,012	1800	1779	0,338	1178	0,0	Α
	9	494	1,016	708	697	0,709	203	17,5	В
	10	364	1,017	36	35	10,384	-329	17107,2	F
D	11			***					
	12	511	1,018	576	566	0,903	55	53,3	E
Α	2+3	692	1,012	1789	1768	0,391	1076	0,0	Α
В	4+5+6	2440		4440					
С	7+8+9	1095	1,013	1800	1776	0,617	681	5,3	Α
D	10+11	364	1,017	36	35	10,384	-329	17107,2	F
1.5	-51		erreic	hbare Qualität	setufe OSV				F

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls A

									kt mit Lic								
						Bewe	rtung de	r Verkeh	rsqualitä	t im Kraft	fahrzeug	gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knote		KP 402: F	rankfurte	r Str I	3451		-										
						sefall A - n	ait ÖV										
					Flogilo	serali A - II	IIL O V										
Res		HEINZ+F															
	t _u =	90	[S]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	α	a.	t _F	ţ _F	С	Х	fA	N _{GE}	N _{MS}	S	NI	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		q _{Kfz}	qs			100.00	10000					N _{MS} ,s				William Street	
NI.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 Z1/F	FS11	427	1844	22	21	451	0,947	0.244	11,443	21,939	95	29,861	1,023	183	124,8	E	K2 - von W - L
	FS12	830	1913	22	57	1233	0,673	0.644	1,406	14,438	95	20,864	1,029	129	14,2	A	K1 - von W - G+R
	F312	030	1913		5/	1233	0,073	0,044	1,400	14,430	95	20,004	1,029	129	14,2	А	KI-VOIIVV-G+K
3										_						25	
4			1							L.							
5																Ĭ.	1
6				-			\neg										T
7										1						-	
	-							-	Phase	2					-		
0 70%	E004 1	20.4	4040	4.4	40	207	0.774	0.450			OF	40044	4.004	70	00.4	_ D	IZA was NI I
	FS21	221	1842	14	13	287	0,771	0,156	2,359	7,660	95	12,341	1,024	76	66,1	D	K4 - von N - L
	FS22	352	1950	14	38	845	0,417	0,433	0,421	6,507	95	10,820	1,026	67	19,4	A	K3 - von N - R
10																	1
11	- 1																
12		-	-														
							-	-									
13																	
14																	
									Phase	3				- 10.			
15 Z3/F	FS31	657	2000	34	31	711	0,924	0,356	12,054	27,817	95	36,737	1,000	220	88,9	E	K5 - von O - G+L
	FS32	611	1905	34	31	677	0,902	0,356	9,142	23,634	95	31,856	1,050	201	76,1	E	K5 - von O - G+R
17	1 002	011	1300	54	31	07.7	0,302	0,550	0,142	20,004	90	51,050	1,000	201	70,1		K3 - 4011 O - O 11K
18										_							
19																	
									Phase	4				100			
20 Z4/F	FS41	15	1087	5	5	72	0.207	0.067	0.146	0.501	95	1.698	1.840	19	47.0	С	K6 - von S - G+L
21	1011	- 10	1001		-	1-	0,201	0,001	0,110	0,001		1,000	1,010	10	717,0		110 - 1011 0 - 0 12
			-				-					—		-			
22																	
23																	
24																	
-									Phase	5							
25			1					1							7		1
26																	
			-				-					—		-			-
27																	
28																	
29							T										
									Phase	6							
30			1					1							7		The second second
	-		-			\vdash	_									8	
31																4	
32			1														
33																	1
34																	
		-							≺notenpu	ınkt						i.	
-	Summe:	3113				4276			otompt						- 4		
		3113	-			4276	0.70	-					- 1		04.7	6	
gew. Mit							0,784								61,7	4	
Ma	aximum:		8				0,947							220	124,8	E	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls A

							Kno	otenpuni	kt mit Lic	htsignala	ınlage						
						Bewe	rtung der					gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knote		KP 402: F	rankfurte	r Str L	3451												
						nosefall A -	mit ÖV										
		HEINZ+F			giiiogi	ioseiali A -	THE OV										
Bea					100700000			2000									
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-T	
_	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	[1]	12)	্থি	[4]	(9)	10)	1/3	(O)			(11)	1123	[13]	(14)	(10)	110}	[17]
4 1747	5011	054	1000	- 00	00	405	0.007	0.000	Phase		0.5	47.000	1.010	105	FO. 4	-	120 147 1
	FS11	351	1863	22	20	435	0,807	0,233	3,232	11,522	95	17,262	1,013	105	59,4	D	K2 - von W - L
	FS12	692	1929	22	53	1157	0,598	0,600	0,953	11,744	95	17,540	1,016	107	14,2	A	K1 - von W - G+R
3																16	
4																	
5																	
6	*												ä			1	T .
7																1	
									Phase:	2				-		4	
8 Z2/	FS21	299	1859	14	17	372	0,804	0,200	3,076	10,202	95	15,604	1,015	95	64,1	D	K4 - von N - L
	FS22	423	1975	14	38	856	0,804	0,200	0.593	8.219	95	13,004	1,013	79	20.9	В	K3 - von N - R
	F522	423	1975	14	38	800	0,494	0,433	0,593	8,219	95	13,067	1,013	79	20,9	В	K3 - V0N N - R
10												-					
11																00	
12																	
13																	II
14				-				-					- 1		-	12	
	-		•						Phase	3							
15 Z3/F	FS31	528	2000	34	28	644	0.819	0.322	3,786	15,942	95	22,695	1,000	136	49.2	С	K5 - von O - G+L
	FS32	487	1939	34	28	625	0,779	0,322	2,720	13,740	95	20,009	1,031	124	43,3	č	K5 - von O - G+R
17	1 002	101	1000		20	020	0,770	0,022	2,720	10,140	00	20,000	1,001	127	70,0		10-40110-0110
18		-	_					-				\vdash	-	_			
		-	_			-	_					\vdash	_			4	
19																	
									Phase -								
	FS41	8	1119	- 5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42,7	С	K6 - von S - G+L
21																	
22																	
23																	
24	- 1						\neg										1
		•	•						Phase	5		•					
25			1			T			1			1	1	- 1			
26			\rightarrow			 	\rightarrow					\vdash					7
27		-				H	-+					-	-			4	
							-										
28						—						\vdash				ķ.	
29																	
									Phase	6							
30																	
31																	
32																	
33													-				T
34																	
7-1		-		_					≺notenpu	nkt				-			
-	Summe:	2700				4460	- 1		motempt	IIIK				· ·	- /1		
	Summe:	2788				4163	0.700					\vdash			00.0		
gew. Mi							0,703							1421	38,0		
Ma	aximum:		8				0,819		- 00	0				136	64,1	D	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls B

							Kne	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe	rtung de	r Verkeh	rsqualitä	t im Kraft	fahrzeug	gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kno		KP 402: F	rankfurte	r Str - L	3451		-										
	tabschnitt:	Vormittad	cenitza	Dlanuna	1 Progno	cofall R in	nit Ô.V										
ZOIL	Bearbeiter:	LICINIZAC	EIED Cm	ki i	i i rogno	361all D = 11	III O V										
В					100700000			25902									
	t _o =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	Q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Vr.	1160000000	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	F-1	NUMBER OF THE PERSON OF THE PERSON
-	640																64.70
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
- Copie									Phase								
1 Z	1/FS11	509	1832	21	21	448	1,137	0,244	34,851	47,576	95	59,241	1,030	366	314,2	F	K2 - von W - L
2 Z	1/FS12	830	1913	21	57	1233	0,673	0,644	1,406	14,438	95	20,864	1,029	129	14,2	A	K1 - von W - G+R
3																	
4										1							
5							-						-	-			
6		-	-			\vdash	_	-				\vdash		-	-		
_												\vdash				ti-	
7			/														
									Phase								
	2/FS21	286	1835	13	13	285	1,002	0,156	12,202	19,352	95	26,791	1,028	165	191,9	F	K4 - von N - L
9 Z:	2/FS22	418	1950	13	38	845	0,495	0,433	0,594	8,132	95	12,954	1,026	80	20,9	В	K3 - von N - R
10																	
11						1						\vdash					
12		-				1	-		-	-		—		-		5	
							-					\vdash					
13												-			-		
14																	
		-							Phase:	3				- 1			
15 Z:	3/FS31	704	2000	31	31	711	0,990	0,356	23,195	40,698	95	51,488	1,000	309	146,3	E	K5 - von O - G+L
16 Z:	3/FS32	656	1896	31	31	674	0,973	0,356	19,212	35,372	95	45,430	1,055	288	131,2	E	K5 - von O - G+R
17																	
18				_	-		_							-			
		-	$\overline{}$			1	$\overline{}$			_		-	_	_	-		
19						ļ						L .					
									Phase -								
	4/FS41	14	1089	5	5	73	0,193	0,067	0,133	0,464	95	1,617	1,836	18	46,3	С	K41 - BUS
21																	
22										1							
23													1				
24							-						- 1				
		4							Phase	5			-	- 1			
OF I	-	1	_		-	1		-1	1 Hast	_		г г			-		
25						-						\vdash					
26	- 1																1
27																	
28										-							
29													i i				1
		-							Phase	6							•
30			1									l I					
31							_					\vdash	5	-			
32	i i	-						-		-		\vdash			-		1
							\longrightarrow					\vdash			-		
33						\vdash											
34	- 1												5				
									≺notenpu	ınkt							
	O	3417				4269											
	Summe:	34 17 1															
gew. N	Summe: Mittelwert:	34 17				10.008	0,869	- 8		-					124,4		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 und den Belastungen des Prognosefalls B

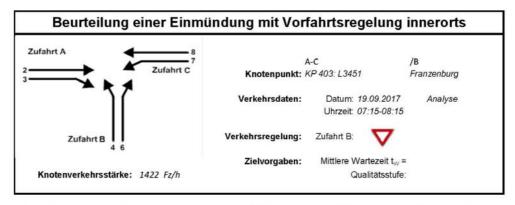
							Kno	otenpuni	kt mit Lic	htsignala	ınlage						
		-C-F				Bewe	rtung de					gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knote		KP 402: F	rankfurte	r Str - L	3451		-										
						nosefall B -	mit ÖV										
		HEINZ+F			g i i iogi	1036Idil D =	THE OV										
Bea					1 10 10 10 10 10 10 10 10 10 10 10 10 10			2000	2000								
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	q_s	t _F	ţ _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-T	
-	(4)									{10}							(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}		{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	FS11	432	1852	21	21	453	0,954	0,244	12,176	22,818	95	30,897	1,019	189	130,3	E	K2 - von W - L
2 Z1/	FS12	692	1969	21	53	1181	0,586	0,600	0,899	11,569	95	17,321	1,016	106	13,8	Α	K1 - von W - G+R
3							T			-							
4										1							
5																	T .
6																	7
7		-	-				-+										0
1									Dhar:	2							
A 1700	E004	00.4	4040	00	4.7	0001	0.000	0.000	Phase		0.5	00.400	1.000	40-1	100 =	-	174 81 1
	FS21	364	1846	23	17	369	0,986	0,200	13,398	22,466	95	30,482	1,022	187	166,5	Е	K4 - von N - L
	FS22	511	1955	23	39	869	0,588	0,444	0,907	10,515	95	15,999	1,023	98	22,6	В	K3 - von N - R
10																	
11										-			- 1		9		
12												i i					
13		-													-		Tr.
14		-	_			1	-	-				 					
14						ļ			Phase	2							
	FS31	559	2000	26	27	622	0,898	0,311	8,440	21,802	95	29,699	1,000	178	78,5	Е	K5 - von O - G+L
	FS32	536	1896	26	27	590	0,909	0,311	9,208	22,077	95	30,023	1,035	186	86,0	E	K5 - von O - G+R
17																	
18										<u> </u>							T-
19													1			9	
	-						•		Phase	4							
20 Z4/	FS41	8	1119	5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42.7	С	K41 - BUS
21	1011	Ť	1110		-	10	0,101	0,001	0,001	0,200		1,100	1,100	12	72,7		1011-000
		-								-			-				1
22							\longrightarrow								-		
23								- 1				\vdash			-	A .	
24																	
									Phase	5							
25																	The state of the s
26													ŝ)	T.
27																1	
28												1	-				
29		-										\vdash					
20		L .							Dhar					L			
00					_	, ,		-1	Phase	0	_				-		
30								-				\vdash				A.	
31													Î			16	J.
32																	1
33																	T.
34							\neg									9	
		L							≺notenpu	ınkt				L		-	
	Summe:	3102				4159	-	- 15	Moreithr	a int							
		3102	-			4109	0.705	-							70.0		
gew. Mi							0,795							100	73,6		
Ma	aximum:		8 3				0,986			0		3		189	166,5	Е	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls A

										htsignala							
						Bewe	ertung de	r Verkeh	rsqualitä	im Kraft	fahrzeug	gverkehr					
		VU Franz	enburg														
		Wetzlar															
Knoter			rankfurte														
Zeitabs					2 Progno	isefall A - n	nit OV										
Bear	rbeiter:	HEINZ+F	EIER Gm	bH													
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd. E	Bez.	q _{Kfz}	q_s	t _F	ţ _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	-	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
_	{1}		{3}	[5] {4}			[-] {7}	[-J {8}		{10}	{11}	{12}		{14}	[5] {15}	[-] {16}	{17}
	[1]	{2}	{3}	{4}	{5}	{6}	{/}	{o}	{9}		{11}	{12}	{13}	{14}	{10}	{10}	(17)
4 174/5	044	407	4044	20	00	550	0.770	0.200	Phase		05	40.400	4.000	440	45.0		1/0 10/ 1
1 Z1/F:		427	1844	28	26	553	0,772	0,300	2,545	12,269	95	18,193	1,023	112	45,3	С	K2 - von W - L
2 Z1/F:	S12	830	1913	28	53	1148	0,723	0,600	1,892	16,553	95	23,433	1,029	145	18,7	A	K1 - von W - G+R
3																	
4			l/														
5																	
6																	1
7).							
100.0									Phase:	2							-
8 Z2/F:	S21	221	1842	14	16	348	0,635	0,189	1,119	6,211	95	10,426	1,024	64	45,2	С	K4 - von N - L
9 Z2/F:		352	1950	14	47	1040	0,338	0,533	0,296	5,307	95	9,203	1,026	57	13,0	Α	K3 - von N - R
10																	
11	-																
12													_				à constant
		_					-						-	-			
13	_					-							-			-	
14									- N								
	r								Phase								
15 Z3/F:		416	2000	28	23	533	0,780	0,267	2,691	12,321	95	18,257	1,000	110	48,7	С	K5 - von O - G+L
16 Z3/F:		384	1919	28	23	512	0,750	0,267	2,180	10,982	95	16,586	1,042	104	45,6	С	K5 - von O - G
17 Z3/F:	S33	468	1940	28	39	862	0,543	0,444	0,735	9,301	95	14,459	1,031	89	21,4	В	K6 - von O - R
18																	
19																	
				_					Phase -								
20 Z4/F:	S41	8	1119	5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42,7	С	K41 - BUS
21																	
22																	
23								i i									
24																	
									Phase	5							
25							- 1	1	1				1		7	1	
26																	
27	-						-							-	-	-	
	-												-	-	-		
28																	
29						الللا			Disease								
	-								Phase	0				-			
30																	
31																	1
32			1														
33																	
34																	1
•	-								Knotenpu	ınkt		•					
S	umme:	3106				5071				1							
gew. Mitt							0,662								31,4		
							0.780							145	48.7	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls A

							Kne	otenpuni	kt mit Lic	htsignala	ınlage						
		arti travel				Bewe	rtung de					gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knot		KP 402: F	rankfurte	r Str L	3451		-										
						nosefall A -	mit ÖV										
		HEINZ+FI			g z i iogi	ioseiali A -	THE OV										
В					1 10 10 10 10 10 10 10 10 10 10 10 10 10			2000									
	t _u =	90	[S]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _e	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-T	
-	(4)									{10}							(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}		{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	/FS11	351	1863	21	22	476	0,737	0,256	1,993	10,042	95	15,402	1,013	94	45,8	С	K2 - von W - L
2 Z1	/FS12	692	1969	21	47	1050	0,659	0,533	1,297	13,745	95	20,016	1,016	122	19,6	Α	K1 - von W - G+R
3																	
4																	
5																	T
6																	
7		1	-	_		1	-+										
1									Dhag	2					_		
^ I=-	/E004	0001	1000	00	00	1 40-1	0.70.1	0.007	Phase:		0.5	15001	4.040	0.01	40.1	_	124 81 1
	/FS21	360	1863	23	23	497	0,724	0,267	1,845	10,026	95	15,381	1,013	93	43,4	C	K4 - von N - L
	/FS22	504	1979	23	50	1121	0,449	0,567	0,488	7,813	95	12,541	1,011	76	12,9	Α	K3 - von N - R
10																	
11				é .				-		-			- 1		-	1	
12												i i					
13															-		
14						 	_					\vdash				8	
14						1			-								
									Phase								
	/FS31	313	2000	26	20	467	0,671	0,233	1,355	8,467	95	13,389	1,000	80	41,8	С	K5 - von O - G+L
	/FS32	288	1939	26	20	453	0,636	0,233	1,134	7,617	95	12,285	1,031	76	40,1	С	K5 - von O - G
17 Z3	/FS33	414	1970	26	42	941	0,440	0,478	0,467	7,310	95	11,883	1,015	72	17,3	A	K6 - von O - R
18																	
19																	
-			•						Phase	4				-			-
20 Z4	/FS41	8	1119	5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42.7	С	K41 - BUS
20 24	71 JH1	0	1119		J	(3)	0/107	0,007	0,007	0,233	30	1,100	1,700	12	42,7		IG17-D00
			-			 	\rightarrow										
22												\vdash					
23												\vdash					
24								3					i i				
									Phase:	5							
25																	
26				-			\neg										
27																-	
28			-				_					1				+	
29	-	-	-			 	_	-				\vdash				8	
29						J			Direct								
									Phase	0							
30																A.	
31													1				1
32																	
33																Ţ.	
34																	
7									≺notenpu	nkt							
	Cumm -	2930				E070	-		motempt	IIIK				· ·	- /1		
	Summe:	2930				5079	0.007					\vdash			00.0		
	littelwert:						0,607								28,6	6	
M	laximum:						0,737		- 00	0				122	45,8	С	

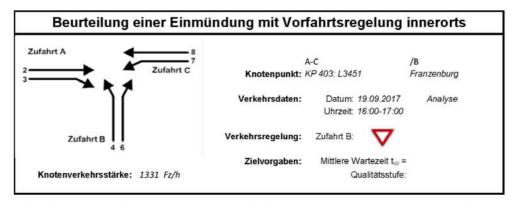

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls B

									kt mit Lic								
						Bewe	rtung de	r Verkeh	rsqualitä	t im Kraft	fahrzeug	gverkehr					
		VU Franz	enburg														
	Stadt:	Wetzlar															
Kn	otenpunkt:	KP 402: F	rankfurte	r Str L	3451												
7e	itabschnitt:					sefall B - n	nit ŐV										
	Bearbeiter:	HEINZ+F					account TO UKA										
-					4.400	In a	Т=	4.0	ri-1								
	t _U =	90	[s]	f _{in} =	1,100	[-]	1 =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	C	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	1
-	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	- J.I.	145	િગ	141	. J⊃l	ŲΨ	U	ſοl	Phase		fill	1145	List	fi4l	Liol	TIOL	1175
4 T-	74/5014	FOOL	1000		- 00	550	0.000	0.000			0.5	04.000	1.000	100	100.0	-	120
	Z1/FS11	509	1832	26	26	550	0,926	0,300	10,640	22,975	95	31,082	1,030	192	100,2	E	K2 - von W - L
	Z1/FS12	830	1913	26	53	1148	0,723	0,600	1,892	16,553	95	23,433	1,029	145	18,7	A	K1 - von W - G+R
3															- 13		
4																	
5																1	1
6																	7
7		-	-	_		—	-								-		7
1									Phos	2							
	70/5004	00.1	100-F			0.7=1	0.00-1	0.46-1	Phase:		0.5	1500-	4 00-1		70 - 1	-	
	Z2/FS21	286	1835	16	16	347	0,825	0,189	3,556	10,426	95	15,887	1,028	98	72,0	Е	K4 - von N - L
	Z2/FS22	418	1950	16	47	1040	0,402	0,533	0,395	6,603	95	10,949	1,026	67	13,8	Α	K3 - von N - R
10										-							1
11																1	
12		-				1											
13	-	-				 	-					\vdash	-			_	T
		-	_				_						_				
14																	
									Phase:								
15 2	Z3/FS31	416	2000	23	23	533	0,780	0,267	2,691	12,321	95	18,257	1,000	110	48,7	С	K5 - von O - G+L
16 2	Z3/FS32	384	1919	23	23	512	0,750	0,267	2,180	10,982	95	16,586	1,042	104	45,6	С	K5 - von O - G
17 Z	Z3/FS33	560	1932	23	39	859	0,652	0.444	1.248	12,201	95	18,108	1,035	112	24.8	В	K6 - von O - R
18																	
19						1						\vdash					
13						1			Phase	4							
00 I-			1110		-	75	0.407	0.007			0.5	1.100	1 700	40	10.7	_	LOCAL PRINC
	Z4/FS41	8	1119	5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42,7	С	K41 - BUS
21																	
22																	
23																	T
24													- 8				
-	-		-			•			Phase	5						-	
25						1						Г		- 1			
26			-			 	-					\vdash					
						-						\vdash			-		
27																	
28										-							11
29																	
			•						Phase	6		•					
30															1		1
												\vdash					
		-	-			 	-					\vdash					î .
												\vdash					
32																	
32 33						I T											The second secon
32 33																	
32 33									Knotenpu	ınkt							· ·
32 33	Summe:	3411				5062			Knotenpu	ınkt							
31 32 33 34	Summe: Mittelwert:	3411				5062	0,720		Knotenpu	ınkt					42.5		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 402 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 und den Belastungen des Prognosefalls B

									kt mit Lic								
		-				Bewe	rtung de	r Verkeh	rsqualitä	t im Kraft	fahrzeug	gverkehr					
		VU Franz	enburg														
	Stadt:	Wetzlar															
Knot	tenpunkt:	KP 402: F	rankfurte	r Str L	3451												
Zeita	abschnitt:	Nachmitta	gsspitze	- Planun	g 2 Progn	osefall B -	mit ÖV										
		HEINZ+FI															
	t _u =		[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
		90	[5]		715/2000		_										
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	C	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	FI	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	Lil	14)	(v)	170	[~]	[O]	10	ίοὶ	Phase		Lili	(12)	[IO]	(1.4)	[10]	(IO)	(i.i)
4 74	VEC44	400	4050	04	0.5	FOF	0.007	0.000			0.5	40.500	4.040	440	E0.4	_	170 187
	I/FS11	432	1852	21	25	535	0,807	0,289	3,331	13,347	95	19,526	1,019	119	52,1	D	K2 - von W - L
	I/FS12	692	1969	21	49	1094	0,633	0,556	1,131	12,986	95	19,081	1,016	116	17,4	A	K1 - von W - G+R
3																	
4																	
5																	T
6							-					\vdash					7
7			-		-												7
1									Dhar:	2							
			10.1-1		2.4	I (e.f	0.00-1	0.07.1	Phase		0.5	1700-	4 00-1	1	prog		
	VFS21	364	1846	23	21	451	0,807	0,244	3,233	11,798	95	17,607	1,022	108	57,8	D	K4 - von N - L
	2/FS22	511	1955	23	51	1130	0,452	0,578	0,494	7,796	95	12,518	1,023	77	12,4	A	K3 - von N - R
10																	1
11																	
12												1				1	
	-		-					-				\vdash	-				T.
13			\rightarrow				_	-				\vdash					
14																	
									Phase	3							
15 Z3	3/FS31	313	2000	26	19	444	0,704	0,222	1,628	8,843	95	13,872	1,000	83	45,5	C	K5 - von O - G+L
16 Z3	3/FS32	288	1934	26	19	430	0,670	0,222	1,348	7,928	95	12,690	1,034	79	43,3	С	K5 - von O - G
	3/FS33	494	1961	26	40	893	0,553	0,456	0.771	9,759	95	15,043	1,020	92	20.9	В	K6 - von O - R
18			1001		- 10		0,000	0,100		0,100		10,0.10	1,020		20,0		
	_	-	\rightarrow			_	\rightarrow	-				\vdash	_			8	
19																	
				_					Phase								-
	1/FS41	8	1119	5	5	75	0,107	0,067	0,067	0,255	95	1,108	1,788	12	42,7	С	K41 - BUS
21																	
22																	
23																	T .
24			-				-	-				\vdash					
24									Dhar	_						L	
1									Phase	0							
25												\Box					
26	- 1																1
27																	
28																j	1
29						—										9	
									Phase	6							
20	-		-		-			-1	rnase			_	-	-	-	8	
30								- 1				\vdash				A.	
31																0.0	1
32																	7
33																	T
34						—										1)	
, m									(noton=:	unkt							
		I						- 1	≺notenpu	ILIKE							
	Summe:	3102				5052										i.	
gew. N	/littelwert:				Į Į		0,644			Ī	i i				32,0		T-
	1aximum:) = 9				0,807							119	57,8	D	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Bestand

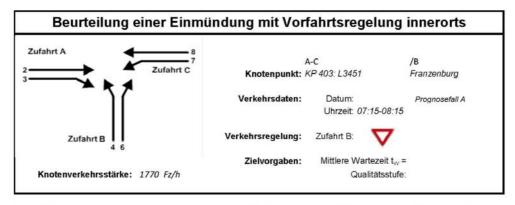


liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀
	2 (1)		1800	1,000	1800	0,293	
Α	3 (1)	222	915	1,000	915	0,119	
-	4 (3)	1172	228	1,000	156	0,251	
В	6 (2)	514	640	0,994	636	0,165	
_	7 (2)	514	716	1,000	716	0,318	0,682
С	8 (1)	_	1800	1,000	1800	0,246	

$\overline{}$	_			122	201700000000000000000000000000000000000	T	220000000000000000000000000000000000000	000000000000000000000000000000000000000	
100 mm/m	09.9	Fahrzeuge	Faktoren	Kapazität	Kapazitāt	Auslastungs-	Kapazitāts-	mittlere	Qualităts
Zufahrt	Strom	$q_{Fz,i}$	f _{PE,i}	$C_{PE,i}$	Ci	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
,	2	514	1,025	1800	1757	0,293	1243	0,0	Α
Α	3	109	1,000	915	915	0,119	806	4,5	Α
В	4	39	1,000	156	156	0,251	117	30,8	D
В	6	102	1,029	636	618	0,165	516	7,0	Α
С	7	222	1,025	716	698	0,318	476	7,6	Α
	8	436	1,014	1800	1774	0,246	1338	0,0	Α
Α	2+3	-		-		-		-	
В	4+6				122			100	
С	7+8								

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Bestand

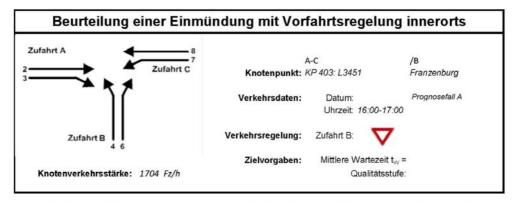


liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀
	2 (1)		1800	1,000	1800	0,325	
Α	3 (1)	116	1041	1,000	1041	0,073	
В	4 (3)	1151	235	1,000	193	0,246	
В	6 (2)	581	590	0,996	588	0,097	
_	7 (2)	581	663	1,000	663	0,177	0,823
С	8 (1)	_	1800	1,000	1800	0,254	

	1		Quantat	der Einz	ei- una i	MISCHSUR	me		100
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazitāt C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitāts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	581	1,007	1800	1787	0,325	1206	0,0	Α
Α	3	76	1,000	1041	1041	0,073	965	3,7	Α
В	4	48	0,990	193	195	0,246	147	24,4	С
В	6	56	1,020	588	576	0,097	520	6,9	Α
С	7	116	1,012	663	655	0,177	539	6,7	Α
C	8	454	1,006	1800	1789	0,254	1335	0,0	Α
Α	2+3	-				-			
В	4+6							12	
С	7+8								
			erreic	hbare Qualität	sstufe QSV _{F7}	ges			С

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Prognosefall A



liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	pazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand p ₀
	2 (1)		1800	1,000	1800	0,436	
Α	3 (1)	243	892	1,000	892	0,126	
В	4 (3)	1471	152	1,000	82	0,564	
В	6 (2)	767	470	0,994	467	0,311	
_	7 (2)	767	537	1,000	537	0,463	0,537
С	8 (1)	_	1800	1,000	1800	0,262	

			Qualität	der Einz	el- und l	Mischströ	ime		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazitāt C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	767	1,024	1800	1758	0,436	991	0,0	Α
Α	3	112	1,000	892	892	0,126	780	4,6	Α
	4	46	1,000	82	82	0,564	36	97,6	E
В	6	141	1,030	467	454	0,311	313	11,5	В
С	7	243	1,023	537	525	0,463	282	12,7	В
C	8	461	1,021	1800	1763	0,262	1302	0,0	Α
Α	2+3	-				-			
В	4+6					7227	1122	112	
С	7+8					-		-	
			erreic	hbare Qualität	sstufe QSV _{FZ}	ges			Е

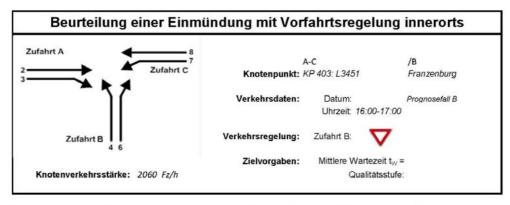
Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Prognosefall A

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀
	2 (1)		1800	1,000	1800	0,385	
Α	3 (1)	155	993	1,000	993	0,088	
_	4 (3)	1502	146	1,000	107	0,477	
В	6 (2)	685	519	0,996	518	0,128	
_	7 (2)	685	589	1,000	589	0,267	0,733
С	8 (1)		1800	1,000	1800	0,372	-

			Quantut	der Einz	ci una i	moonotic	71110		
0.000	V45	Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts
Zufahrt	Strom	$q_{Fz,i}$	f _{PE,i}	$C_{PE,i}$	C,	grad x _i	reserve R	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
Α	2	685	1,012	1800	1778	0,385	1093	0,0	Α
^	3	87	1,000	993	993	0,088	906	4,0	Α
В	4	51	1,000	107	107	0,477	56	63,6	E
В	6	64	1,033	518	501	0,128	437	8,2	Α
С	7	155	1,014	589	581	0,267	426	8,4	Α
·	8	662	1,013	1800	1777	0,372	1115	0,0	Α
Α	2+3		-	-	(mine	-			
В	4+6					_			-
С	7+8					_			
			erreic	hbare Qualität	sstufe QSV _{E7}				Е

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag im Prognosefall B



liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po
¥ .	2 (1)		1800	1,000	1800	0,538	
Α	3 (1)	263	870	1,000	870	0,130	
В	4 (3)	1788	99	1,000	38	1,421	
В	6 (2)	941	380	0,994	378	0,470	
	7 (2)	941	440	1,000	440	0,615	0,385
С	8 (1)		1800	1,000	1800	0,332	

			Qualität	der Einz	el- und l	Mischströ	ime		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE.i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazitāt C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitāts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	941	1,028	1800	1751	0,538	810	0,0	Α
Α	3	113	1,000	870	870	0,130	757	4,8	Α
	4	54	1,000	38	38	1,421	-16	1094,6	F
В	6	172	1,033	378	366	0,470	194	18,5	В
С	7	263	1,029	440	428	0,615	165	21,6	С
C	8	584	1,024	1800	1758	0,332	1174	0,0	Α
Α	2+3	-				-			
В	4+6					0220		122	
С	7+8					-		-	
			erreic	hbare Qualität	sstufe QSV _{F7}	ges			F

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag im Prognosefall B

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

		Kaj	oazitäte	n der Einz	elström	е	
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po
	2 (1)		1800	1,000	1800	0,477	
Α	3 (1)	182	961	1,000	961	0,101	-
	4 (3)	1838	92	1,000	57	0,976	
В	6 (2)	845	427	0,996	426	0,169	
	7 (2)	845	491	1,000	491	0,378	0,622
С	8 (1)	_	1800	1,000	1800	0,460	

			Qualität	der Einz	el- und l	Mischströ	ime		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	845	1,017	1800	1771	0,477	926	0,0	Α
Α	3	97	1,000	961	961	0,101	864	4,2	Α
	4	56	1,000	57	57	0,976	1	374,0	E
В	6	69	1,041	426	409	0,169	340	10,6	В
С	7	182	1,019	491	482	0,378	300	12,0	В
C	8	811	1,020	1800	1765	0,460	954	0,0	Α
Α	2+3	-				-		-	
В	4+6	<u> </u>				(22)		12	
С	7+8	-		-		-		-	
			erreic	hbare Qualität:	sstufe QSV _{FZ}	ges			Е

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A

							Kn	otenpunk	t mit Lic	htsignala	nlage						
						Bewe		r Verkehi				gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knot		KP 403: L	3451 - F	ranzenbi	ira												
						gnosefall A											
		HEINZ+F			LONTING	giroseiaii A											
Бе					1 30 300	100		1000									
	t _U =	90	[S]	f _{in} =	1,100	[-]	T =	1,0	[h]								
fd.	Bez.	q _{Kfz}	q_s	t _F	ţ _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
۸r.		[Kfz/h]	[Kfz/h]	[S]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	- ALACONTO LA CONTRO - LE CONTRO -
-	640																(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
1 Z1	/FS11	767	1941	68	68	1488	0,515	0,767	0,653	8,050	95	12,849	1,031	79	5,6	A	K1 - von S - G
2 Z1	/FS12	112	2000	68	68	1533	0,073	0,767	0,044	0,736	95	2,186	1,000	13	2,7	Α	K1 - von S - R
3 Z3	/FS31	243	465	68	68	357	0,682	0,767	1,420	4,389	95	7,933	1,030	49	19,5	A	K3 - von N - L
	/FS32	461	1947	68	68	1493	0,309	0,767	0,257	3,781	95	7,069	1,027	44	3,8	A	K3 - von N - G
5		101				1100	0,000	0,101	0,207	2,101		.,000	1,021	1.7	0,0	- "	
6			-				-		-			\vdash				8	
_						—						-					
7			1														
									Phase :								
	/FS21	46	1860	12	12	269	0,171	0,144	0,116	1,125	95	2,918	1,000	18	35,3	U	K2 - von O - L
9 Z2	/FS22	141	1817	12	12	262	0,537	0,144	0,706	3,976	95	7,348	1,038	46	45,4	С	K2 - von O - R
10																	
11			\rightarrow			1						\vdash	- 8			9	
12			-			+	-					\vdash	_				
			4									\vdash					
13																	
14																	
									Phase 3	3							
15																	
16																	
17			1			1											
18	-				-		_										
			_				_					\vdash					
19												LI					
				_					Phase -	4							
20										-							
21																	7
22												İ					
23		-															
24			_			1	-		-			\vdash					
-						ļ			Dhaar					-			
35 T	-				_				Phase !	0					-		
25												-					
26																	1
27			1														
28																	
29													5			9	
									Phase	6			-				
n I		-	- 1		-	1	_	- 1	i nase	1		_	-	- 1	-		
30												\vdash				A .	
31																	1
32			1							1							
33																	T. Company
34													- 3			9	
			-			•		- 1	notenpu	ınkt							
	Summe:	1770				5402	- 1		I				-		7		
		1110				3402	0.440	-							10.0		
	littelwert:				-		0,449								10,8		
M	laximum:		0				0,682		200	0		3 3		79	45,4	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A

Project Vi Print								V		let mait ! -!	hini wasi-							
Project W. France W. France W. Safe	+						Rewe						nverkehr					
Start Marcial Marcia		Projekt:	VIII Erana	ronhura			Dewe	itung de	Verker	irsquantai	iiii Krait	ianizeu	yerkeni					
Marchengune Marchenge Ma				.onburg														
Sear-late Hell-2+Fills Hell-2+F	Knot			3/51 E	ranzonhi	ıra												
The property The							ognocofall	۸										
The color of the						y LOA FI	ognoseran	<u>n</u>										
Fig.	De		_			1 100	I., I			I.c.								
No.			90	[S]		/					1							
No.		Bez.	q _{Kfz}	q_s	t_F	t _F	C	X	f _A	Nge	N _{MS}	S	N _{MS,S}	fsv	Ls	t _W	QSV	Bemerkungen
	Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
		{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
2										Phase	1							
3 ZAFS31 155 509 65 65 1443 0.459 0.733 0.417 1.903 95 4.226 1.017 26 8.6 A K3 - von N - L 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 64 1810 15 15 331 0.154 0.178 0.102 1.160 95 3.017 1.000 18 32.4 B 6 AFS32 64 1810 15 15 332 0.199 0.178 0.140 1.503 95 3.577 1.042 22 33.1 B K2 - von O - R 6 AFS32 64 1810 15 15 322 0.199 0.178 0.140 1.503 95 3.577 1.042 22 33.1 B K2 - von O - R 7 AFS32 7 AFS	1 Z1/	/FS11	685	1969	65	65	1444	0,474	0,733			95	12,193	1,016	74	6,3	A	K1 - von S - G
3 ZAFS31 155 509 65 65 1443 0.459 0.733 0.417 1.903 95 4.226 1.017 26 8.6 A K3 - von N - L 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 662 1968 65 65 1443 0.459 0.733 0.508 7.159 95 11.664 1.016 71 6.11 A K3 - von N - G 5 AFS32 64 1810 15 15 331 0.154 0.178 0.102 1.160 95 3.017 1.000 18 32.4 B 6 AFS32 64 1810 15 15 332 0.199 0.178 0.140 1.503 95 3.577 1.042 22 33.1 B K2 - von O - R 6 AFS32 64 1810 15 15 322 0.199 0.178 0.140 1.503 95 3.577 1.042 22 33.1 B K2 - von O - R 7 AFS32 7 AFS			87	2000	65	65	1467	0,059	0,733							3.4	A	K1 - von S - R
A																		
S																		
Record Fig.											1							
The color of the																		
Place Place Place Place Place Place Place Place							1											
8 ZZFSZ1 51 1860 15 15 331 0,154 0,178 0,102 1,180 95 3,017 1,000 18 324 B (2-von 0-L 0 2 2 3 3 1 B (2-von 0-L 0 2 2 3 3 1 B (2-von 0-L 0 2 2 3 3 1 B (2-von 0-L 0 2 2 3 3 1 B (2-von 0-R 0 2 2 2 3 3 1 B (2-von 0-R 0 2 2 2 2 3 3 1 B (2-von 0-R 0 2 2 2 2 3 3 1 B (2-von 0-R 0 2 2 2 2 3 3 1 B (2-von 0-R 0 2 2 2 2 2 3 1 B (2-von 0-R 0 2 2 2 2 2 3 1 B (2-von 0-R 0 2 2 2 2 2 3 3 1 B (2-von 0-R										Phase :	2					-		
9 ZZFS22 64 1810 15 15 322 0,199 0,178 0,140 1,508 95 3,577 1,042 22 33,1 B K2-von O-R 10 1	8 72	/FS21	51	1860	15	15	331	0.154	0.178			95	3.017	1.000	18	324	В	K2 - von O - I
10																		
11			04	,010			522	0,100	0,170	0,140	1,000		0,000	1,072	- 44	55,1		1011 0 - 10
12							1											
13			-				1							-		-		
14		-					 	_	-					_				
15		-					1	_			_		\vdash		-	-		
15	14				-		ļ			Dhana								
16	45	-				_		_		Priase .	,		_	-				
17		-					 	_			_			-		_		
18							1									-		
19		-						_										
Phase 4 20							-	_			_							
20	19						<u> </u>											
21			_							Phase	4		_					_
Company Comp																		
23																		
Phase 5				4							/							
Phase 5 25																		
25	24																	
26										Phase:	5							
27																		
28		- 1																
29				4														
Phase 6 30																		
30	29																	
31										Phase (6							
32																		
33																		Ţ
34 Summe: 1704 5380 Summe: 1704 5380 Summe: 0,422 Summe: 8,1	32										/							
Knotenpunkt	33																	
Knotenpunkt	34	- 1																
gew. Mittelwert: 0,422 8,1 8,1										Knotenpu	ınkt							
gew. Mittelwert: 0,422 8,1 8,1		Summe:	1704				5380				0							
				i i				0,422								8.1		
Maximum. 14 33.11 B		faximum:						0,474							74	33,1	В	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B

									ct mit Lic								
						Bewe	rtung de	r Verkehi	rsqualität	im Kraft	fahrzeug	gverkehr					
		VU Franz	enburg														
		Wetzlar															
	notenpunkt:																
	eitabschnitt:				LSA Prog	nosefall B											
	Bearbeiter:	HEINZ+F	EIER Gml	bΗ													
	t _u =	90	[S]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	ţ _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.	manage a.	[Kfz/h]	[Kfz/h]			[Kfz/h]			[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]		William Control	100000000000000000000000000000000000000
-	643			[S]	[s]		[-]	[-]							[S]	[-]	(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase							-	
	Z1/FS11	941	1930	68	51	1115	0,844	0,578	5,275	24,660	95	33,058	1,036	206	32,7	В	K1 - von S - G
	Z1/FS12	113	2000	68	51	1156	0,098	0,578	0,060	1,324	95	3,271	1,000	20	8,7	Α	K1 - von S - R
	Z3/FS31	263	1793	68	68	1375	0,191	0,767	0,133	1,931	95	4,281	1,038	27	3,2	A	K3 - von N - L
	Z3/FS32	584	1940	68	68	1487	0,393	0,767	0,379	5,253	95	9,129	1,031	56	4,4	Α	K3 - von N - G
5																	
6	ř Ť												3				T .
7																	
									Phase :	2						5	
8	Z2/FS21	54	1860	12	12	269	0,201	0,144	0,142	1,331	95	3,282	1,000	20	35,8	С	K2 - von O - L
	Z2/FS22	172	1811	12	12	262	0,658	0,144	1,234	5.299	95	9.193	1,042	57	53.4	D	K2 - von O - R
10	-41 -44	172	1011	1Z	12	202	0,000	0,144	1,204	5,233		0,100	1,042	31	77,74		114 - 1011 0 - 11
)							-	-							-	
11																	
12																	
13																	
14	Î																
									Phase 3	3							
15																	
16	ř j																Y
17			i i												**		
18	7												-		7		
19	Y						-						- 3				
10									Phase -	4							
20				_	-	1		1	1 Hase	1			-		-		
21	2	-				_	-		-	_			_	_	-		
						-		-				-				16-	
22																	
23																	
24																	
									Phase :	5							
25																	
26	į j																1
27																	
28																	1
29	ž - 8																
						•			Phase	3							•
30	1		- 1			1		1	1					- I	-		
31	2 8	-	-			 							â	-			
							-					-				4	
32												-					
33									-								
34																	
								- F	≺notenpu	nkt							
	Summe:	2127				5663											
gew.	. Mittelwert:		i i				0,568								21,8		
	Maximum:						0.844			(1				206	53.4	D	TO .

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
		-6.5				Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
Kno	otenpunkt:		3451 - F	ranzenhi	ıra												
Zoit	taboohnitt:	Machmitte	agconitzo	Dianun	al CA Dr.	ognosefall	D										
	Bearbeiter:	HEINIZ.	EIER Gm	- manulij ku	y LON FI	ognoserali	_										
В					1 10711111111	T	910	1000	CO.								
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-T	1
-	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	111	12)	19)	(4)	(9)	10)	1/)	10j			[11]	[12]	[13]	(14)	(10)	1103	[17]
4 17	1/5011	0.45	4050	0.7		10.10	0.004	0.000	Phase		0.5	04.000	1.001	100	110		1//
	1/FS11	845	1958	67	56	1240	0,681	0,633	1,472	15,097	95	21,668	1,021	133	14,9	A	K1 - von S - G
	1/FS12	97	2000	67	56	1267	0,077	0,633	0,046	0,980	95	2,655	1,000	16	6,5	A	K1 - von S - R
	3/FS31	182	1816	67	67	1372	0,133	0,756	0,085	1,322	95	3,266	1,025	20	3,2	A	K3 - von N - L
4 Z	3/FS32	811	1950	67	67	1474	0,550	0,756	0,764	9,248	95	14,391	1,026	89	6,5	A	K3 - von N - G
5																	TI.
6																	
7							-					\vdash			-		
-									Phase	,							
0 17	0/5004	F01	4000	40	40	000	0.404	0.450			OF	0.000	4.000	201	242	В	1/0:
	2/FS21	56	1860	13	13	289	0,194	0,156	0,135	1,354	95	3,322	1,000	20	34,8	В	K2 - von O - L
	2/FS22	69	1793	13	13	279	0,247	0,156	0,186	1,701	95	3,907	1,052	25	35,8	С	K2 - von O - R
10																	
11																	
12															**		
13																	1
14							-										
14									Phase	2							
AE I	-		-			,		- 1	riiase.						- 1		
15												\vdash					
16																	
17			1							1							
18										1							T-
19															-		
									Phase	4							
20																	1
21							-										
						-	-										
22						-											
23												\vdash					
24																	
									Phase:	5							
25																	
26																	T. Comments
27																	
28																	
29																	
29									Dhar								
00	-		-		_				Phase	0			-				
30																	
31																	1
32).							1
33																	1
34																	
									Knotenpu	nkt							
	Summe:	2060				5921		-	Thotelipt	iiiit.		1					
00111 A		2000	9 -			5921	0.505	-							44.4	Š.	
	Mittelwert:						0,525							100	11,4		
1	Maximum:		8				0,681		50	0				133	35,8	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten									
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{f,j} [-]	Kapazität C _{PE,I} [Pkw-E/h]		
1	767	1,024	785	249	1022	1,000	1022		
2	187	1,022	191	785	597	1,000	597		
3	704	1,022	719	46	1200	1,000	1200		

	Beurteilung der Verkehrsqualität								
Zufahrt	Kapazitāt C _i [Fz/h]	Kapazitätsreserve R [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts- stufe QSV					
1	999	232	15,2	В					
2	584	397	9,1	A					
3	1174	470	7,6	Α					
	_		erreichbare Qualitätsstufe QSV _{ges}	В					

	Beurteilung der	Ausfahrten
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung
1	517	nicht ausgelastet
2	249	nicht ausgelastet
3	930	nicht ausgelastet

Zufahrt 1: L 3451 Südwest Zufahrt 2: Franzenburg Zufahrt 3: L 3451 Nordost Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{t,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	685	1,012	693	157	1106	1,000	1106
2	115	1,018	117	693	676	1,000	676
3	817	1,013	828	51	1199	1,000	1199

Zufahrt	Kapazität Kapazitätsreserve C _i R _i		mittlere Wartezeit t _{w.i}	Qualitäts stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	1092	407	8,8	Α
2	664	549	6,6	Α
3	1184	367	9,7	Α
₩λ			erreichbare Qualitätsstufe QSV _{ges}	Α

Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung		
1	721	nicht ausgelastet		
2	157	nicht ausgelastet		
3	760	nicht ausgelastet		

Zufahrt 1: L 3451 Südwest Zufahrt 2: Franzenburg Zufahrt 3: L 3451 Nordost Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE.Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{t,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	941	1,028	968	271	1004	1,000	1004
2	226	1,025	232	968	467	1,000	467
3	847	1,026	869	54	1193	1,000	1193

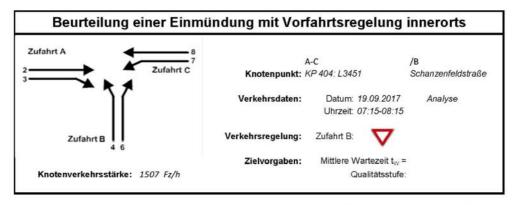
Beurteilung der Verkehrsqualität					
Zufahrt	Kapazität C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV	
1	976	35	57,7	E	
2	455	229	15,6	В	
3	1163	316	11,3	В	
73			erreichbare Qualitätsstufe QSV _{ges}	E	

Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung		
1	652	nicht ausgelastet		
2	271	nicht ausgelastet		
3	1145	nicht ausgelastet		

Zufahrt 1: L 3451 Südwest Zufahrt 2: Franzenburg Zufahrt 3: L 3451 Nordost Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 403 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

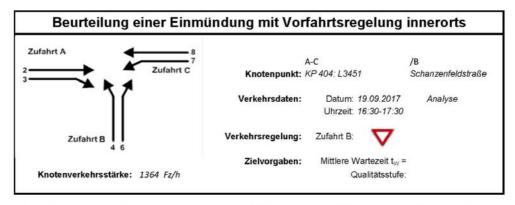

	Kapazitäten der Zufahrten												
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{t,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]						
1	845	1,017	859	186	1077	1,000	1077						
2	125	1,022	128	859	544	1,000	544						
3	993	1,020	1013	56	1191	1,000	1191						

	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts
Zufahrt	C _i	R _i	t _{w,i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	1059	214	16,4	В
2	532	407	8,9	Α
3	1168	175	19,6	В
***			erreichbare Qualitätsstufe QSV _{ge}	В

	Beurteilung der Ausfahrten								
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung							
1	883	nicht ausgelastet							
2	186	nicht ausgelastet							
3	931	nicht ausgelastet							

Zufahrt 1: L 3451 Südwest Zufahrt 2: Franzenburg Zufahrt 3: L 3451 Nordost

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag im Bestand



liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme											
Zufahrt	Strom (Rang)	Hauptströme q _{p,1} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazität C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po					
	2 (1)		1800	1,000	1800	0,338						
Α	3 (1)	82	1086	1,000	1086	0,164						
-	4 (3)	1222	213	1,000	185	0,341						
В	6 (2)	602	575	1,000	575	0,094						
_	7 (2)	602	648	1,000	648	0,131	0,869					
С	8 (1)	_	1800	1,000	1800	0,307						

			Quantat	der Einz	ei- una i	viischstro	ome		14
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	602	1,009	1800	1783	0,338	1181	0,0	Α
Α	3	175	1,016	1086	1068	0,164	893	4,0	Α
В	4	61	1,034	185	179	0,341	118	30,4	D
В	6	49	1,104	575	521	0,094	472	7,6	Α
С	7	82	1,034	648	626	0,131	544	6,6	Α
C	8	538	1,029	1800	1750	0,307	1212	0,0	Α
Α	2+3	-				-	(eee		
В	4+6	22		-		1 1		22	
С	7+8	-			-	-		777	
		•	erreic	hbare Qualität	sstufe QSV _{FZ}	ges			D

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Bestand

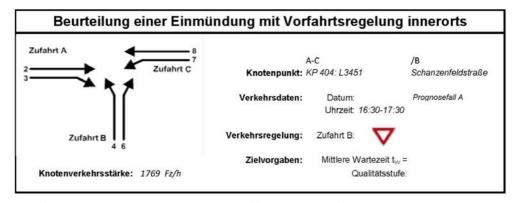
Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po						
	2 (1)		1800	1,000	1800	0,301							
Α	3 (1)	48	1132	1,000	1132	0,055	0.000						
	4 (3)	1152	235	1,000	217	0,501							
В	6 (2)	541	619	1,000	619	0,073	10000						
	7 (2)	541	694	1,000	694	0,073	0,927						
С	8 (1)	_	1800	1,000	1800	0,316							

			Qualität	der Einz	el- und l	Mischströ	ime		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazităt C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	541	1,003	1800	1795	0,301	1254	0,0	Α
Α	3	61	1,011	1132	1119	0,055	1058	3,4	Α
	4	109	1,000	217	217	0,501	108	32,9	D
В	6	42	1,071	619	578	0,073	536	6,7	Α
С	7	48	1,058	694	656	0,073	608	5,9	Α
C	8	563	1,009	1800	1784	0,316	1221	0,0	Α
Α	2+3					-			
В	4+6								
С	7+8	-			-	-			
		•	erreic	hbare Qualität	sstufe QSV _{FZ}	ges			D

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag im Prognosefall A

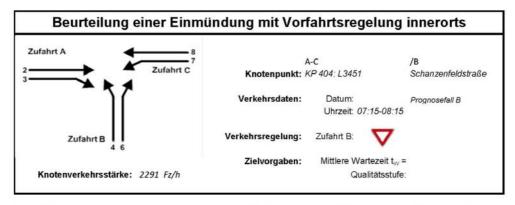


liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazităt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po						
	2 (1)		1800	1,000	1800	0,358							
Α	3 (1)	144	1006	1,000	1006	0,215							
	4 (3)	1549	137	1,000	104	0,839							
В	6 (2)	636	552	1,000	552	0,120							
_	7 (2)	636	623	1,000	623	0,237	0,763						
С	8 (1)		1800	1,000	1800	0,439	-						

			Qualitat	der Einz	el- und l	dischstr	ome		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	636	1,013	1800	1777	0,358	1141	0,0	Α
Α	3	213	1,016	1006	990	0,215	777	4,6	Α
	4	84	1,042	104	100	0,839	16	165,5	E
В	6	60	1,105	552	499	0,120	439	8,2	Α
_	7	144	1,024	623	608	0,237	464	7,8	Α
С	8	769	1,027	1800	1752	0,439	983	0,0	Α
Α	2+3					-			
В	4+6	200							
С	7+8			-					

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Prognosefall A

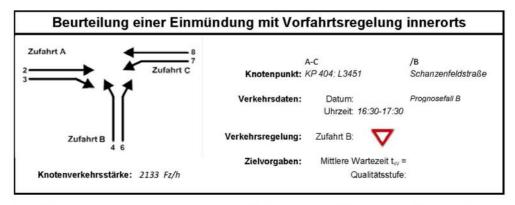


liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand P ₀						
	2 (1)		1800	1,000	1800	0,430							
Α	3 (1)	56	1121	1,000	1121	0,073							
-	4 (3)	1491	148	1,000	131	1,040							
В	6 (2)	767	470	1,000	470	0,141							
_	7 (2)	767	537	1,000	537	0,111	0,889						
С	8 (1)		1800	1,000	1800	0,376	0.22						

		Fahrzeuge	Faktoren	Kapazität	Kapazität	Auslastungs-	Kapazitäts-	mittlere	Qualitäts
Zufahrt	Strom	q _{Fz,i}	f _{PE.i}	C _{PE.i}	C,	grad x,	reserve R.	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	2	767	1,009	1800	1784	0,430	1017	0,0	Α
A	3	80	1,018	1121	1101	0,073	1021	3,5	Α
_	4	136	1,005	131	131	1,040	-5	293,3	F
В	6	62	1,068	470	440	0,141	378	9,5	Α
С	7	56	1,063	537	505	0,111	449	8,0	Α
١	8	668	1,013	1800	1778	0,376	1110	0,0	Α
Α	2+3					-			
В	4+6				122	(122)		100	
С	7+8								

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag im Prognosefall B



liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme												
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f	Kapazitāt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po						
	2 (1)		1800	1,000	1800	0,441							
Α	3 (1)	144	1006	1,000	1006	0,232							
	4 (3)	1895	85	1,000	62	1,791							
В	6 (2)	779	463	1,000	463	0,144	1122						
_	7 (2)	779	529	1,000	529	0,279	0,721						
С	8 (1)		1800	1,000	1800	0,557							

_	_					Mischströ			
	CS17	Fahrzeuge	Faktoren	Kapazität	Kapazitāt	Auslastungs-	Kapazitāts-	mittlere	Qualităts
Zufahrt	Strom	$q_{Fz,i}$	f _{PE,i}	$C_{PE,i}$	Ci	grad x _i	reserve R _i	Wartezeit w	stufe
		[Fz/h]	[-]	[Pkw-E/h]	[Fz/h]	[-]	[Fz/h]	[s]	QSV
	2	779	1,019	1800	1767	0,441	988	0,0	Α
Α	3	229	1,021	1006	985	0,232	756	4,8	Α
0	4	106	1,040	62	59	1,791	-47	1610,5	F
В	6	61	1,095	463	423	0,144	362	9,9	Α
С	7	144	1,024	529	517	0,279	373	9,6	Α
	8	972	1,032	1800	1745	0,557	773	0,0	Α
Α	2+3					-			
В	4+6			<u> </u>		(<u></u>)		100	
С	7+8								

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag im Prognosefall B

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Einzelströme										
Zufahrt	Strom (Rang)	Hauptströme q _{p,i} [Fz/h]	Grundkap. G _i [Pkw-E/h]	Abminderungs- faktor f _f [-]	Kapazităt C _{PE,i} [Pkw-E/h]	Auslastungs- grad x _i [-]	staufreier Zustand Po				
	2 (1)		1800	1,000	1800	0,533					
Α	3 (1)	56	1121	1,000	1121	0,087					
	4 (3)	1827	94	1,000	81	1,847					
В	6 (2)	943	379	1,000	379	0,176					
_	7 (2)	943	439	1,000	439	0,135	0,865				
С	8 (1)		1800	1,000	1800	0,468	-				

			Qualitat	der Einz	ei- una i	viischstro	ome		
Zufahrt	Strom	Fahrzeuge q _{Fz,i} [Fz/h]	Faktoren f _{PE,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]	Kapazität C _i [Fz/h]	Auslastungs- grad x _i [-]	Kapazitäts- reserve R _i [Fz/h]	mittlere Wartezeit w [s]	Qualitäts stufe QSV
	2	943	1,017	1800	1770	0,533	827	0,0	Α
Α	3	95	1,022	1121	1096	0,087	1001	3,6	Α
	4	148	1,009	81	80	1,847	-68	1661,3	F
В	6	63	1,059	379	358	0,176	295	12,2	В
С	7	56	1,063	439	413	0,135	357	10,1	В
١	8	828	1,018	1800	1769	0,468	941	0,0	Α
Α	2+3					-			
В	4+6					_			
С	7+8								

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enbura				1										
		Wetzlar															
I/n/	otenpunkt:		24E1 C	chanzani	foldetroß.												
	tabschnitt:				LSA PIOU	noseiali A											
L			EIER Gm														
	t _o =	90	[S]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	ţ _F	С	X	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.	Nethalosa.	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	F-1	NUMBER OF THE PERSON OF THE PE
-	643																64.70
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	1/FS11	144	411	65	68	315	0,457	0,767	0,500	1,793	95	4,058	1,031	25	9,5	A	K1 - von S - L
	1/FS12	769	1932	65	68	1481	0,519	0,767	0,663	8,115	95	12,933	1,035	80	5,7	Α	K1 - von S - G
3 Z	3/FS31	636	1967	65	68	1508	0,422	0,767	0,432	5,915	95	10,029	1,017	61	4,7	A	K3 - von N - G
	3/FS32	213	1959	65	68	1502	0,142	0,767	0.092	1,487	95	3,549	1,021	22	3,0	Α	K3 - von N - R
5		- 70		05/5/			-,		-1.2.24			-,-,-			-,-		1
6							-					\vdash					
7	-					1	-					 				-	
1			1/						Dhas								
		,	100-F			1 07.1	0.00-1		Phase:		0.5	1 4 00 - 1	4 25 1	g.1			141 5
	2/FS22	84	1898	15	12	274	0,306	0,144	0,253	2,133	95	4,603	1,054	29	37,8	С	K2 - von W - R
	2/FS21	60	1762	15	12	255	0,236	0,144	0,174	1,503	95	3,576	1,135	24	36,6	С	K2 - von W - L
10																	
11	*																7
12												1					
13	-						-	-				\vdash					
			_				-					\vdash		_	-		
14						ļ			-								
									Phase	3							
15																	
16																	1
17			1							1							
18																	I
19																	
			-						Phase	1							
20			_		-		_	_	1 Huge	_		_			-		
							_			_		-					
21																	
22			/														
23																	
24																	
			•			•			Phase	5		•		-			
25			1			1											
26																	
27			-									1			-		
28							-					\vdash		-	-		
						-		-				\vdash				1	
29																	
									Phase	6							
30																	1
31																	1
32												i i					
33																	
34			-									\vdash	- 3				
J4						L			/maham:::	um lok							
	C	,							≺notenpu	INKT							
	Summe:	1906				5334											
	Mittelwert:		Ш		J		0,422							221	7,7		
	Maximum:						0,519		- 0		- 19			80	37,8	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls A

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Kno	tenpunkt:	KP 404: I	L 3451 - S	chanzen	feldstraß	е											
Zeita	abschnitt:	Nachmitt	agsspitze	- Planun	g A												
	earbeiter:																
	t _u =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	7.50	_		710000000	10.0				N.I.	0	NI.	4	10	140	0014	Bemerkungen
Nr.	Dez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Demerkungen
INL		[Kfz/h]	[Kfz/h]	[S]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	1/FS11	56	389	65	65	285	0,196	0,733	0,137	0,574	95	1,854	1,080	12	5,5	A	K1 - von S - L
	1/FS12	668	1968	65	65	1443	0,463	0,733	0,517	7,259	95	11,815	1,016	72	6,1	Α	K1 - von S - G
	3/FS31	767	1977	65	65	1450	0,529	0,733	0,693	9,049	95	14,136	1,012	86	7,0	A	K3 - von N - G
	3/FS32	80	1956	65	65	1434	0,056	0,733	0,033	0,589	95	1,886	1,023	12	3,4	A	K3 - von N - R
5																	
6																	[
7																	
									Phase:	2							
8 Z2	2/FS22	62	1840	15	15	327	0,190	0,178	0,131	1,450	95	3,487	1,087	23	32,9	В	K2 - von W - R
	2/FS21	136	1987	15	15	353	0,385	0,178	0,365	3,366	95	6,469	1,007	39	36,4	С	K2 - von W - L
10																	
11																	7
12																	
13																	T
14																	
						-			Phase	3							
15		_			-	1			1 Huse				- 1		- 1		
16	_					1											
17													_				
18				_									-	_	-		1
19	_					1											
19									Phase	4							
00 1					_	_		_	Phase	4					-		
20																-	
21														-			
22																	
23																	
24																	
		_							Phase	•							
25																	
26																	
27																	
28																	T .
29																	1
									Phase	6							
30																	
31													i				
32																	
33																	
34																	
_					•	•			Knotenpu	ınkt		• •					
	Summe:	1769				5293											
new N	/littelwert:	1,50				02.00	0,449								9,6		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B

							IV	-4	d id 1 ' -	latal was !-							
						Dawe				htsignala t im Kraft		nuarkahr					
	Projekt:	VU Franz	enhura			DeWe	rung de	verken	rsquanta	uni ruan	rarır zeuç	gverkerir					
	Stadt:	Wetzlar	chourg														
K			3451 - 9	chanzent	feldstraß	2											
	eitabschnitt:					*											
-	Bearbeiter:	HEINZ+FI															
	t _U =		[s]	f _{in} =	1,100	[-]	Т=	1,0	[h]								
lfd.	Bez.	2000						_	20.00	100 1	-	T (1				0.017	Bemerkungen
Nr.	Dez.	Q _{Kfz}	qs	t _F	t _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _v	QSV	Demerkungen
130.5		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	7.15011		4000				0.400	0.004	Phase		0.5	0.000	1.001		07.5	_	F/4 - 6 (
1_	Z1/FS11	144	1883	65	68	1444	0,100	0,201	0,062	0,971	95	2,638	1,031	42	37,5	С	K1 - von S - L
2	Z1/FS12	600	1925	65	68	1476	0,407	0,767	0,404	5,489	95	9,451	1,039	59	4,5	A	K1 - von S - G
3	Z3/FS31	599	1967	65	68	1508	0,397	0,767	0,387	5,411	95	9,345	1,017	57	4,4	A	K3 - von N - G
4	Z3/FS32	202	1956	65	68	1500	0,135	0,767	0,087	1,401	95	3,403	1,022	21	2,9	A	K3 - von N - R
5																	
6		-															
7									Divers								
_	70/5000	OF.	1005	4.5	40	074	0.007	0.444	Phase		05	9.700	1 000	0.4	20.4	-	1/2 (see)4/ D
8	Z2/FS22	65	1895	15	12	274	0,237	0,144	0,176	1,616	95	3,766	1,055	24 24	36,4	C	K2 - von W - R
9	Z2/FS21	60	1762	15	12	255	0,236	0,144	0,174	1,503	95	3,576	1,135	24	36,6	С	K2 - von W - L
10		\vdash															
11		-				-											
12	_																
13																	
14								18	Disease			ļ.,,					
A.F.									Phase	3					1		
15												-					
16		-															
17		-															
18							_										
19	L					J.		L	Phase	4							
20		г	- 1			1	-		rnase	1		1					
21		 														_	
22	-	-													-		
23		-															
24																	
24						OI.			Phase	5							
25		1	- 1	Y		1	ı		Filase								
26		—					-					—					
27		-															
28		-	-														
29			_				_										
29								- 1	Phase	6			-				
30		г	- 1			1	- 1		riiase			1			-		
31							-										
32	-	-				\vdash				-					-	_	
33		-															
34							_										
34						J. J.			≺notenpu	ınkt							
	Summe:	1670				6456			vilotetibr	ankt I	- 3	1	()				
dew	Mittelwert:	1070				0430	0,331								6,6		
gen	Maximum:	-					0,331							59	36.6	С	
	rerdXIIIIuIII.	-		10	4		0,407		-		- 2	2		39	30,0	0	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante LSA und den Belastungen des Prognosefalls B

Nr.							nlane	hteianala	ct mit Lie	ntennunk	K n							
Project VU Franzenburg State Wetziar Knotenpunit KP 404 L 3451 - Schanzenfeldstraße Zeitabschnift Nachmittagsspitze - Planung B Bearbeter HEINZ-FELER GmbH T = 1,0 [h]						verkehr						Bewe						_
Stadt Westzlar Knotenpunkt KF 404 L 3451 - Schanzenfeldstraße Zeitabschnitt Wachmittagsspitze - Planung B						TOTACIN	iui ii zoug	ini iti dit	oquanta	TOTACIA	I	Done			enhura	VIII Eranzi	Projekt:	_
Rindenpunk KP 404 L 3451 - Schanzenfeldstraße Zeitabschnitt Nachmittagsspitze - Planung B Bearbeiter HEIN2+EIER Gribbi T = 1,0 h															onbarg			-
Zeltabschnitt Nachmittagspitze - Planung B Earbeiter HEINZ+FEIER GmbH Flanz												8	aldetraß e	chanzenfa	3/151 S			- k
Bearbeiter HEINZ+FEIER GmbH												SQ.						
Tid Bez. Q _{ktz} Q _S I _F I _F C X f _A N _{0E} N _{MS} S N _{MS,S} f _S V L _S N _M Q _S N _{MS} N _{MS}													, U					
Fig. Color Fig. Color Fig. Fig. Fig. Color Color Fig. Fig. Fig. Color Fig. Fig. Fig. Color Fig. Fig. Fig. Color Fig. Fig. Fig. Fig. Color Fig. Fig. Fig. Color Fig. Fig. Fig. Fig. Fig. Color Fig. Fig									ru I	4.0	-	ra I	4.400					_
Nr.															_	250,000		
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (17) (18) (19) (1	/ Bemerkungen	QSV	t _{ev}	Ls	fsv	N _{MS,S}	S	N _{MS}	N _{GE}	fA	Х	С	t _F	t _F	q_S	q _{Kfz}	Bez.	
1 Z1/FS11 56 1797 65 65 1318 0,042 0,202 0,025 0,410 95 1,493 1,080 20 30,6 B 2 Z1/FS12 604 1971 65 65 1445 0,418 0,733 0,425 6,231 95 10,453 1,015 64 5,7 A 3 Z3/FS31 632 1986 65 65 1456 0,434 0,733 0,456 6,636 95 10,993 1,007 66 5,8 A 4 Z3/FS32 65 1973 65 65 1447 0,045 0,733 0,026 0,474 95 1,639 1,014 10 3,4 A 5 5 7 7 7 7 7 7 7 7		[-]	[S]	[m]	[-]	[Kfz]	[%]	[Kfz]	[Kfz]	[-]	[-]	[Kfz/h]	[s]	[S]	[Kfz/h]	[Kfz/h]		Nr.
1 Z1/FS11 56 1797 65 85 1318 0,042 0,202 0,025 0,410 95 1,493 1,080 20 30,6 B 2 Z1/FS12 604 1971 65 65 1445 0,418 0,733 0,425 6,231 95 10,453 1,015 64 5,7 A 4 Z3/FS32 65 1973 65 65 1456 0,434 0,733 0,456 6,636 95 10,993 1,007 66 58 A 4 Z3/FS32 65 1973 65 65 1447 0,045 0,733 0,026 0,474 95 1,639 1,014 10 3,4 A 5 66 66 66 66 66 66 6	{17}	{16}	{15}	{14}	{13}	{12}	{11}	{10}	{9}	{8}	{7}	{6}	{5}	{4}	{3}	{2}	{1}	
2 Z1/FS12 604 1971 65 65 1445 0,418 0,733 0,425 6,231 95 10,453 1,015 64 5,7 A 3 Z3/FS31 632 1986 65 65 1456 0,434 0,733 0,456 6,636 95 10,993 1,007 66 5,8 A 4 Z3/FS32 65 1973 65 65 1447 0,045 0,733 0,026 0,474 95 1,639 1,014 10 3,4 A 5	1000							1	Phase '		***							
2 Z1/FS12 604 1971 65 65 1445 0,418 0,733 0,425 6,231 95 10,453 1,015 64 5,7 A 3 Z3/FS31 632 1986 65 65 1456 0,434 0,733 0,456 6,636 95 10,993 1,007 66 5,8 A 4 Z3/FS32 65 1973 65 65 1447 0,045 0,733 0,026 0,474 95 1,639 1,014 10 3,4 A 5	K1 - von S - L	В	30.6	20	1,080	1,493	95	0,410	0,025	0,202	0,042	1318	65	65	1797	56	Z1/FS11	1
3 Z3/FS31 632 1986 65 65 1456 0.434 0.733 0.456 6.636 95 10.993 1.007 66 5.8 A 4 Z3/FS32 65 1973 65 65 1447 0.045 0.733 0.026 0.474 95 1.639 1.014 10 3.4 A 5 6 7	K1 - von S - G					10.453	95		0.425		0.418	1445	65	65		604		2
4 Z3/FS32 65 1973 65 65 1447 0,045 0,733 0,026 0,474 95 1,639 1,014 10 3,4 A 6 6 6 7 7	K3 - von N - G					10.993						1456				632		
S	K3 - von N - R	A																
6			~,*		.,	.,000		-,	-,020	-,, -0	2,0.10				.5.5			
No.				_		1								-				
State Stat					-	+		- 4								- 4	-	
8						-		2	Phase '							- 3		
9 Z2/FS21 123 2000 15 15 356 0,346 0,178 0,306 3,000 95 5,929 1,000 36 35,5 C 10 11 1	K2 - von W - R	R	32.0	ാവ	1.097	2 /127	05			0.170	0.100	207	15	15	1940	62	70/E900	8
10	K2 - von W - L	6.6																
11	r/Z - VOII VV - L	C	35,5	30	1,000	5,929	95	3,000	0,306	0,178	0,346	300	15	. 15	2000	123	ZZ/F3Z1	
12			_			_		_							_	\vdash		
13																-		
Phase 3 15																		
Phase 3 15																		
15																		14
16								3	Phase									
17																		
18																		
Phase 4 20 Phase 4 21 Phase 4 22 Phase 4 23 Phase 5 24 Phase 5 25 Phase 6																		
Phase 4 20																		18
20																		19
21						1676		4	Phase 4	183		10 P			.114			
22																		20
22																		21
23																		22
24 Phase 5 25 Phase 5 26 Phase 5																		
Phase 5 25																		
25			145	-		Se		5	Phase									
26	7																	25
27						1												27
28				\rightarrow		-			-		-	-			\rightarrow	+		
29				_		 				-	_				-	\vdash		
Phase 6									Phaes 6									20
30 Friese 0					1	-		1	riiase	- 1	- 1	1		-	- 1			20
			-													—		
31																-		
32															_	1		
33						1										\vdash		
34																	L	34
Knotenpunkt								nkt	<notenpu< td=""><td><u>.</u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></notenpu<>	<u>.</u>								
Summe: 1542 6349 6349 6349												6349				1542		
gew. Mittelwert: 0,380 9,0		4000																gev
Maximum: 0,434 66 35,5 C		С	35,5	66			- 9				0,434						Maximum:	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten										
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{tj} [-]	Kapazität C _{PE,i} [Pkw-E/h]			
1	913	1,027	938	88	1163	1,000	1163			
2	849	1,014	861	148	1110	1,000	1110			
3	144	1,068	154	644	703	1,000	703			

Zufahrt	Kapazität C _/ [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV
1	1132	219	15,9	В
2	1094	245	14,4	В
3	658	514	7,0	Α
*0			erreichbare Qualitätsstufe QSV _{ges}	В

	Beurteilung der	Ausfahrten
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung
1	711	nicht ausgelastet
2	878	nicht ausgelastet
3	364	nicht ausgelastet

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten										
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _[,] [-]	Kapazität C _{PE,i} [Pkw-E/h]			
1	724	1,016	736	137	1119	1,000	1119			
2	847	1,010	855	60	1188	1,000	1188			
3	198	1,025	203	774	605	1,000	605			

Zufahrt	Kapazität C, [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV
1	1101	377	9,5	А
2	1176	329	10,8	В
3	591	393	9,2	Α
- 0			erreichbare Qualitätsstufe QSV _{ges}	В

Beurteilung der Ausfahrten			
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung	
1	840	nicht ausgelastet	
2	813	nicht ausgelastet	
3	141	nicht ausgelastet	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{f,j} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	1116	1,031	1150	110	1137	1,000	1137
2	1008	1,019	1028	148	1104	1,000	1104
3	166	1,063	177	794	574	1,000	574

Beurteilung der Verkehrsqualität					
Zufahrt	Kapazităt C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts- stufe QSV	
1	1103	-13	91,3	F	
2	1083	75	38,2	D	
3	540	374	9,6	Α	
100			erreichbare Qualitätsstufe QSV _{ges}	F	

Beurteilung der Ausfahrten			
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung	
1	860	nicht ausgelastet	
2	1113	nicht ausgelastet	
3	381	nicht ausgelastet	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 404 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante KVP und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{f,j} [-]	Kapazität C _{PE,I} [Pkw-E/h]
1	884	1,021	902	149	1108	1,000	1108
2	1038	1,018	1056	60	1188	1,000	1188
3	210	1,027	216	959	473	1,000	473

Beurteilung der Verkehrsqualität					
Zufahrt	Kapazitāt C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts- stufe QSV	
1	1086	202	17,3	В	
2	1167	129	25,3	C	
3	460	250	14,3	В	
10.			erreichbare Qualitätsstufe QSV _{ges}	С	

Beurteilung der Ausfahrten			
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung	
1	1025	nicht ausgelastet	
2	992	nicht ausgelastet	
3	157	nicht ausgelastet	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Bestand

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Fahrzeuge Zufahrt				Verkehrsstärke Verkehrsstärke in der Zufahrt im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
Zulanit	q _{zi} [Fz/h]	f _{PE,Zi} [-]	q _{PEZi} [Pkw-E/h]	q _{PE,Ki} [Pkw-E/h]	G _{PE,I} [Pkw-E/h]	f _{t)}	C _{PE,i} [Pkw-E/h]
1	599	1,029	617	66	1186	1,000	1186
2	980	1,029	990	117	1141	1,000	1141
3	82	1,077	88	763	625	1,000	625

Zufahrt	Kapazität C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w.i} [s]	Qualitäts stufe QSV
1	1152	553	6,5	Α
2	1130	150	22,5	С
3	581	499	7,2	Α
70	<u> </u>		erreichbare Qualitätsstufe QSV _{ges}	С

Beurteilung der Ausfahrten			
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung	
1	785	nicht ausgelastet	
2	566	nicht ausgelastet	
3	344	nicht ausgelastet	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Bestand

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE.Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,I} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{tj} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	672	1,007	677	241	1034	1,000	1034
2	594	1,006	598	30	1218	1,000	1218
3	298	1,016	303	539	793	1,000	793

Zufahrt	Kapazitāt C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV
1	1027	355	10,1	В
2	1211	617	5,8	A
3	780	482	7,5	Α
90			erreichbare Qualitätsstufe QSV _g	B B

Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung		
1	601	nicht ausgelastet		
2	888	nicht ausgelastet		
3	88	nicht ausgelastet		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Prognosefall A (dreiarmiger Kreisverkehr)

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{tj} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	887	1,026	910	102	1154	1,000	1154
2	1210	1,011	1223	183	1084	1,000	1084
3	130	1,059	138	829	578	1,000	578

Zufahrt	Kapazität C, [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV
1	1125	238	14,8	В
2	1072	-138	261,4	F
3	546	416	8,7	Α
			erreichbare Qualitätsstufe QSV _{ges}	F

Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung		
1	864	nicht ausgelastet		
2	830	nicht ausgelastet		
3	577	nicht ausgelastet		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Prognosefall A (dreiarmiger Kreisverkehr)

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,I} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{r,i} [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	803	1,010	811	362	933	1,000	933
2	811	1,013	822	50	1200	1,000	1200
3	477	1,013	483	730	649	1,000	649

	Kapazität	eurteilung der Verkehr Kapazitätsreserve	mittlere Wartezeit	Qualitäts
Zufahrt	C _i	R _i	t _{w,i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	924	121	27,5	С
2	1185	374	9,6	Α
3	641	164	21,4	С
			erreichbare Qualitätsstufe QSV _{ges}	С

	Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung			
1	851	nicht ausgelastet			
2	1124	nicht ausgelastet			
3	142	nicht ausgelastet			

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag im Prognosefall B (vierarmiger Kreisverkehr)

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi}	Pkw-E / Fz Zufahrt f _{PE Zi}	Verkehrsstärke in der Zufahrt qpe.zi	Verkehrsstärke im Kreis q _{PE.Ki}	Grundkapazität G _{PE.i}	Abminderungs- faktor Fußgänger	Kapazität C _{PE.1}
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	1112	1,030	1146	143	1118	1,000	1118
2	161	1,009	162	1259	292	1,000	292
3	1321	1,018	1345	268	1011	1,000	1011
4	153	1,069	164	1011	453	1,000	453

Beurteilung der Verkehrsqualität						
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-		
Zufahrt	C _i	R,	t _{w,i}	stufe		
	[Fz/h]	[Fz/h]	[s]	QSV		
1	1085	-27	107,1	F		
2	290	129	27,6	C		
3	993	-328	612,0	F		
4	424	271	13,3	В		
			erreichbare Qualitätsstufe QSV _{get}	F		

	Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]				
1	1031	nicht ausgelastet			
2	30	nicht ausgelastet			
3	1153	nicht ausgelastet			
4	602	nicht ausgelastet			

Zufahrt 1: L 3451 Südwest

Zufahrt 2: Anschluss 3. BA Blankenfeld

Zufahrt 3: L 3451 Nordost Zufahrt 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag im Prognosefall B (vierarmiger Kreisverkehr)

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität G _{PE i}	Abminderungs- faktor Fußgänger	Kapazität
	q _{zi}	f _{PE,Zi}	q _{PE,Zi}	q pe,ki		17,1	C _{PE,i}
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	970	1,016	985	461	854	1,000	854
2	72	1,029	74	1284	277	1,000	277
3	1041	1,020	1061	95	1160	1,000	1160
4	505	1,017	513	999	460	1,000	460

Beurteilung der Verkehrsqualität					
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-	
Zufahrt	Ci	R,	t _{w.i}	stufe	
	[Fz/h]	[Fz/h]	[s]	QSV	
1	841	-129	310,6	F	
2	269	197	18,3	В	
3	1137	96	31,9	D	
4	453	-52	274,9	F	
		*	erreichbare Qualitätsstufe QSV _{ges}	F	

	Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]				
1	1052	nicht ausgelastet			
2	162	nicht ausgelastet			
3	1263	überlastet, überprüfen			
4	158	nicht ausgelastet			

Zufahrt 1: L 3451 Südwest

Zufahrt 2: Anschluss 3. BA Blankenfeld

Zufahrt 3: L 3451 Nordost Zufahrt 4: Am Leitz-Park Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _[j] [-]	Kapazität C _{PE,I} [Pkw-E/h]
1	887	1,026	910	102	1154	1,000	1154
2	818	1,013	829	183	1084	1,000	1084
3	130	1,059	138	829	578	1,000	578

Beurteilung der Verkehrsqualität					
Zufahrt	Kapazităt C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts stufe QSV	
1	1125	238	14,8	В	
2	1070	252	14,0	В	
3	546	416	8,7	Α	
			erreichbare Qualitätsstufe QSV _{ges}	В	

	Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung			
1	864	nicht ausgelastet			
2	830	nicht ausgelastet			
3	183	nicht ausgelastet			

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _[,] [-]	Kapazität C _{PE,i} [Pkw-E/h]
1	803	1,010	811	362	933	1,000	933
2	722	1,011	730	50	1200	1,000	1200
3	477	1,013	483	730	649	1,000	649

Beurteilung der Verkehrsqualität					
Zufahrt	Kapazität C _i [Fz/h]	Kapazitätsreserve R _i [Fz/h]	mittlere Wartezeit t _{w,i} [s]	Qualitäts- stufe QSV	
1	924	121	27,5	С	
2	1187	465	7,7	Α	
3	641	164	21,4	С	
			erreichbare Qualitätsstufe QSV _{ges}	С	

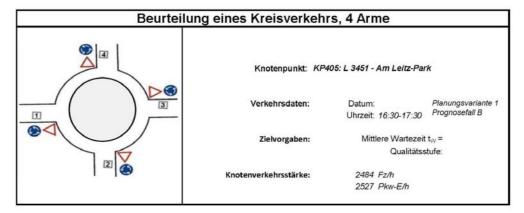
Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]	Auslastung		
1	851	nicht ausgelastet		
2	1124	nicht ausgelastet		
3	50	nicht ausgelastet		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
Zulanit	q_{zi}	f _{PE,Zi}	q PE,Zi	q PE,KI	G _{PE,i}	f _{f,i}	$C_{PE,i}$
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	1112	1,030	1146	143	1118	1,000	1118
2	161	1,009	162	1259	292	1,000	292
3	906	1,021	925	268	1011	1,000	1011
4	153	1,069	164	1011	453	1,000	453


	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts
Zufahrt	Ci	R,	t _{w,i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	1085	-27	107,1	F
2	290	129	27,6	С
3	990	84	35,9	D
4	424	271	13,3	В
			erreichbare Qualitätsstufe QSV	es F

Beurteilung der Ausfahrten		
Ausfahrt	Verkehrsstärke [Pkw-E/h]	
1	1031	nicht ausgelastet
2	30	nicht ausgelastet
3	1153	nicht ausgelastet
4	183	nicht ausgelastet

Zufahrt 1: L 3451 Südwest

Zufahrt 2: Anschluss 3. BA Blankenfeld

Zufahrt 3: L 3451 Nordost Zufahrt 4: Am Leitz-Park Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 1 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
Zulatilit	q_{zi}	$f_{PE,Zi}$	q PE,Zi	q PE,KI	$G_{PE,i}$	f _{f,i}	$C_{PE,i}$
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	970	1,016	985	461	854	1,000	854
2	72	1,029	74	1284	277	1,000	277
3	937	1,018	954	95	1160	1,000	1160
4	505	1,017	513	999	460	1,000	460

Zufahrt	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts stufe
Zulaliit	[Fz/h]	[Fz/h]	t _{w.i} [s]	QSV
1	841	-129	310,6	F
2	269	197	18,3	В
3	1139	202	17,2	В
4	453	-52	274,9	F
		· i	erreichbare Qualitätsstufe QSV	es F

	Beurteilung der	Ausfahrten
Ausfahrt	Verkehrsstärke [Pkw-E/h]	
1	1052	nicht ausgelastet
2	162	nicht ausgelastet
3	1263	überlastet, überprüfen
4	50	nicht ausgelastet

Zufahrt 1: L 3451 Südwest

Zufahrt 2: Anschluss 3. BA Blankenfeld

Zufahrt 3: L 3451 Nordost Zufahrt 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt: VU Franzenburg

Knoten: 405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	-		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	222	100	-	1314	0,17	1092
		Z1	rechts	682	100	-	1314	0,52	632
2	Strasse 2	-	-	-	-	-	-	-	-
3	Strasse 3		links	826	182	-	1216	0,68	390
		Z1	rechts	394	182	-	1216	0,32	822
4	Strasse 4	Z2	Zufahrt	136	826	1.5	596	0,23	460

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	1092	3,4	0,1	2	2	Α
		Z1	rechts	632	5,8	0,7	4	6	Α
2	Strasse 2	_		-	-	1.5		-	
3	Strasse 3		links	390	9,2	1,5	6	10	Α
		Z1	rechts	822	4,4	0,3	2	2	Α
4	Strasse 4	Z2	Zufahrt	460	8,2	0,2	2	2	Α

Gesamt-Qualitätsstufe: A

Gesamter Verkehr

Zufluss über alle Zufahrten
davon Kraftfahrzeuge:2260
2227Pkw-E/h
Fz/hSumme aller Wartezeiten:4,2Fz-h/hMittl. Wartezeit über alle Fz:6,8s pro Fz

Berechnungsverfahren:

Kapazität : Turbo-Kreisverkehr 2015

 Wartezeit
 : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600

 Staulängen
 : Wu, 1997

Staulängen : Wu, 1997 LOS - Einstufung : HBS (Deutschland)

Straße 1: L 3451 Südwest Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt:

VU Franzenburg

Knoten:

405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	2		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	258	361	v	1018	0,25	760
		Z1	rechts	551	361	-	1018	0,54	468
2	Strasse 2	-	-	-	-	-	-	-	-
3	Strasse 3		links	728	50	-	1376	0,53	648
		Z1	rechts	91	50	-	1376	0,07	1286
4	Strasse 4	Z2	Zufahrt	484	728	15.	675	0,72	192

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	760	4,8	0,2	2	2	Α
		Z1	rechts	468	7,7	0,8	4	6	Α
2	Strasse 2	-	100	-	-			-	150
3	Strasse 3		links	648	5,6	0,8	4	6	Α
		Z1	rechts	1286	2,8	0,0	0	0	Α
4	Strasse 4	Z2	Zufahrt	192	18,7	1,7	8	12	В

Gesamt-Qualitätsstufe : E

Gesamter Verkehr

Zufluss über alle Zufahrten davon Kraftfahrzeuge Summe aller Wartezeiten 2112 Pkw-E/h 2092 Fz/h 5,3 Fz-h/h 9,0 s pro Fz

Mittl. Wartezeit über alle Fz Berechnungsverfahren :

Kapazität : Turbo-Kreisverkehr 20

Wartezeit : HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Staulängen : Wu. 1997

Staulängen : Wu, 1997 LOS - Einstufung : HBS (Deutschland)

Straße 1: L 3451 Südwest Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 2 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt: VU Franzenburg

Knoten: 405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	-		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	182	142	v	1263	0,14	1082
		Z1	rechts	955	142	-	1263	0,76	308
2	Strasse 2	Z3	Zufahrt	163	1068	182	368	0,44	206
3	Strasse 3		links	920	268	-	1118	0,82	198
		Z1	rechts	419	268	-	1118	0,37	700
4	Strasse 4	Z2	Zufahrt	163	1006	15.	463	0,35	300

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	1082	3,4	0,1	2	2	Α
		Z1	rechts	308	11,8	2,1	10	14	В
2	Strasse 2	Z3	Zufahrt	206	17,7	0,5	2	4	В
3	Strasse 3		links	198	17,8	3,1	12	18	В
		Z1	rechts	700	5,2	0,4	2	4	Α
4	Strasse 4	Z2	Zufahrt	300	12,6	0,4	2	2	В

Gesamt-Qualitätsstufe:

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2802 davon Kraftfahrzeuge 2749 Fz/h Summe aller Wartezeiten Fz-h/h 9.8 Mittl. Wartezeit über alle Fz 12,9 s pro Fz

Berechnungsverfahren:

Kapazität Turbo-Kreisverkehr 2015

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland)

Straße 1: L 3451 Südwest

Straße 2: Anschluss 3. BA Blankenfeld

Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 2 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt:

VU Franzenburg

Knoten:

405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	2		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	50	459	v	919	0,05	870
		Z1	rechts	931	459	-	919	1,01	-12
2	Strasse 2	Z3	Zufahrt	74	1228	50	294	0,25	220
3	Strasse 3		links	950	95		1320	0,72	370
		Z1	rechts	107	95	-	1320	0,08	1214
4	Strasse 4	Z2	Zufahrt	513	995		471	1,09	-42

Wartezeiten + Staulängen

		Type		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	870	4,2	0,0	0	0	Α
		Z1	rechts	-12	101,5	21,1	40	50	F
2	Strasse 2	Z3	Zufahrt	220	16,8	0,2	2	2	В
3	Strasse 3		links	370	9,8	1,8	8	12	Α
		Z1	rechts	1214	3,0	0,1	0	0	Α
4	Strasse 4	Z2	Zufahrt	-42	235,1	27,2	40	46	F

Gesamt-Qualitätsstufe:

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2625 davon Kraftfahrzeuge 2589 Fz/h Summe aller Wartezeiten 62,8 Fz-h/h Mittl. Wartezeit über alle Fz 87,4 s pro Fz

Berechnungsverfahren:

Kapazität

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland)

Straße 1: L 3451 Südwest

Straße 2: Anschluss 3. BA Blankenfeld

Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 3 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt: VU Franzenburg

Knoten: 405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	-		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	L 3451 SW		links	222	100	v	1314	0,17	1092
		Z1	rechts	682	100	-	1314	0,52	632
2		-	-	-	-	-	-	-	-
3	L 3451 NO		links	392	182	-	1216	0,32	824
		Z1	rechts	828	182	-	1216	0,68	388
4	Am Leitz-Park	Z3	Zufahrt	136	434	392	673	0,20	538

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	L 3451 SW		links	1092	3,4	0,1	2	2	Α
		Z1	rechts	632	5,8	0,7	4	6	Α
2		-		-	-	-		-	
3	L 3451 NO		links	824	4,4	0,3	2	2	Α
		Z1	rechts	388	9,3	1,5	6	10	Α
4	Am Leitz-Park	Z3	Zufahrt	538	7,0	0,2	2	2	Α

Gesamt-Qualitätsstufe:

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2260 davon Kraftfahrzeuge 2227 Fz/h Summe aller Wartezeiten Fz-h/h 4,2 Mittl. Wartezeit über alle Fz 6,8 s pro Fz

Berechnungsverfahren:

Kapazität

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland) Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 3 (dreiarmiger Kreisverkehr) und den Belastungen des Prognosefalls A

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt: VU Franzenburg

Knoten: 405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	-		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	L 3451 SW		links	258	361	v	1018	0,25	760
		Z1	rechts	551	361	-	1018	0,54	468
2		-	-	-	-	-	-	-	-
3	L 3451 NO		links	176	50	-	1376	0,13	1200
		Z1	rechts	643	50	-	1376	0,47	734
4	Am Leitz-Park	Z3	Zufahrt	482	552	176	694	0,69	212

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	L 3451 SW		links	760	4,8	0,2	2	2	Α
		Z1	rechts	468	7,7	0,8	4	6	Α
2		-	100	-	-			-	100
3	L 3451 NO		links	1200	3,0	0,1	0	2	Α
		Z1	rechts	734	5,0	0,6	4	4	Α
4	Am Leitz-Park	Z3	Zufahrt	212	16,9	1,6	6	10	В

Gesamt-Qualitätsstufe:

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2110 davon Kraftfahrzeuge 2091 Fz/h Summe aller Wartezeiten Fz-h/h 4,8 Mittl. Wartezeit über alle Fz 8,3 s pro Fz

Berechnungsverfahren:

Kapazität

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland)

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 3 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt: VU Franzenburg

Knoten: 405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	х	R
	Name	-		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	336	142	v	1263	0,27	928
		Z1	rechts	801	142	-	1263	0,63	462
2	Strasse 2	Z3	Zufahrt	163	914	336	428	0,38	266
3	Strasse 3		links	492	268	-	1118	0,44	626
		Z1	rechts	847	268	-	1118	0,76	272
4	Strasse 4	Z3	Zufahrt	163	514	492	564	0,29	402

Wartezeiten + Staulängen

		Туре		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	928	4,0	0,3	2	2	Α
		Z1	rechts	462	7,9	1,2	6	8	Α
2	Strasse 2	Z3	Zufahrt	266	13,7	0,4	2	4	В
3	Strasse 3		links	626	5,8	0,5	2	4	Α
		Z1	rechts	272	13,2	2,1	10	14	В
4	Strasse 4	Z3	Zufahrt	402	9,4	0,3	2	2	Α

Gesamt-Qualitätsstufe:

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2802 davon Kraftfahrzeuge 2749 Fz/h Summe aller Wartezeiten 7,1 Fz-h/h Mittl. Wartezeit über alle Fz 9,3 s pro Fz

Berechnungsverfahren:

Kapazität

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland)

Straße 1: L 3451 Südwest

Straße 2: Anschluss 3. BA Blankenfeld

Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 3 (vierarmiger Kreisverkehr) und den Belastungen des Prognosefalls B

Kapazität, mittlere Wartezeit und Staulängen - Turbo-Kreisverkehr

Projekt:

VU Franzenburg

Knoten:

405: L 3451 - Am Leitzpark - 3. BA Blankenfeld

Kapazität

		Туре		q-e	q-k-re	q-k-li	q-e-max	X	R
	Name	2		Pkw-E/h	Pkw-E/h	Pkw-E/h	Pkw-E/h	-	Pkw-E/h
1	Strasse 1		links	366	459	v	919	0,40	554
		Z1	rechts	615	459	-	919	0,67	304
2	Strasse 2	Z3	Zufahrt	74	912	366	411	0,18	338
3	Strasse 3		links	282	95	-	1320	0,21	1038
		Z1	rechts	775	95	-	1320	0,59	546
4	Strasse 4	Z3	Zufahrt	513	713	282	539	0,95	26

Wartezeiten + Staulängen

		Type		R	Wz	L	L-95	L-99	QSV
	Name	-		Pkw-E/h	s	Pkw-E	Pkw-E	Pkw-E	-
1	Strasse 1		links	554	6,6	0,5	2	4	Α
		Z1	rechts	304	11,9	1,4	6	10	В
2	Strasse 2	Z3	Zufahrt	338	11,0	0,2	2	2	В
3	Strasse 3		links	1038	3,5	0,2	2	2	Α
		Z1	rechts	546	6,7	1,0	4	6	Α
4	Strasse 4	Z3	Zufahrt	26	79,5	8,3	22	28	Е

Gesamt-Qualitätsstufe: E

Gesamter Verkehr

Zufluss über alle Zufahrten Pkw-E/h 2625 davon Kraftfahrzeuge 2589 Fz/h Summe aller Wartezeiten Fz-h/h 16,0 Mittl. Wartezeit über alle Fz 22,2 s pro Fz

Berechnungsverfahren:

Kapazität

HBS 2015 + HBS 2009 = Akcelik, Troutbeck (1991) mit T = 3600 Wu, 1997 Wartezeit

Staulängen LOS - Einstufung HBS (Deutschland)

Straße 1: L 3451 Südwest

Straße 2: Anschluss 3. BA Blankenfeld

Straße 3: L 3451 Nordost Straße 4: Am Leitz-Park

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Vormittag unter Berücksichtigung der Planungsvariante 4 (vierarmiger lichtsignalgeregelter Knotenpunkt) und den Belastungen des Prognosefalls B

							Kn	otenpuni	t mit Lic	htsignala	nlage						
						Bewe			rsqualität			gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt	Wetzlar															
Kn	otenpunkt.		. 3451 - A	m Leitzp	ark - Blar	kenfeld											
	itabschnitt:						IIB										
			EIER Gm		12011	1091100010											
		-	[s]		1,100	r 1	T =	1,0	[h]								
	t _U =	100000		f _{in} =	2-2-2-2-2	[-]	220	200000	0.00								
lfd.	Bez.	q _{Kfz}	q_S	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 2	Z1/FS11	179	294	60	68	225	0,794	0,767	2,622	5,292	95	9,182	1,025	56	48,1	С	K1 - von W - L
2 2	Z1/FS12	933	1920	60	68	1472	0,634	0,767	1,141	11,726	95	17,517	1,041	109	7,6	Α	K1 - von W - G+R
	Z3/FS31	14	71	60	53	43	0,329	0,600	0,274	0,448	95	1,580	1,129	11	32,1	В	K3 - von O - L
	Z3/FS32	892	1951	60	53	1170	0,762	0,600	2,480	18,915	95	26,270	1,025	162	20,9	В	K3 - von O - G
5			,,,,,				0,.02	0,000	2,.50	.0,010		20,2.0	.,020	1 ~ 2	20,0		
6								-								-	
7				_												-	î .
									Phase:	2							
8 2	Z2/FS21	120	1684	15	12	243	0,493	0,144	0,583	3,347	95	6,441	1,105	43	44.1	С	K2 - von N - L+G
	Z4/FS41	85	1841	15	12	243	0,493	0,144	0,583	2,176	95	4,670	1,105	28	38.2	C	K4 - von S - L+G
	Z4/F541	80	1841	15	12	200	0,320	0,144	0,270	2,170	90	4,070	1,011	26	38,2	C	K4 - VON 5 - L+G
10								-								5	
11																	
12																	
13																	1
14																	
									Phase:	3							
15																25	I
16																	
17										1							
18																	1
19								- 7							-		
									Phase	4							
20																	T.
21								-									
22																	
23				_													1
24																8	
4									Phase	5							
2F T			-		-	1	_	-	riiase:	-		г т			-		Tri .
25								-								i i	
26																	
27												\vdash					
28																8	
29																	1
				_					Phase	6							
30																	I
31																	1
32																	1
33																	1
34																	
		-	•			•			√notenpu	ınkt		• •	,				•
	Summe:	2223				3420											T .
gew	Mittelwert					3.20	0,677								19,5	4	
		S					0,794	10	0					162	48,1	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 405 in der Spitzenstunde am Nachmittag unter Berücksichtigung der Planungsvariante 4 (vierarmiger lichtsignalgeregelter Knotenpunkt) und den Belastungen des Prognosefalls B

							Kn	otennun	kt mit Lic	hteianala	nlage						
						Bewe			rsqualitä			averkehr					
	Projekt:	VU Franz	enburg														
	Stadt	Wetzlar															
Kr	otenpunkt:	KP 405: L	. 3451 - A	m Leitzp	ark - Blar	nkenfeld											
Ze	itabschnitt:						fall B										
	Bearbeiter:	HEINZ+F															
	t _U =	90	[s]	f _{in} =	1,100	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	C	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.	DOZ.																Demorkangen
		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	(470
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	74/5044	Fol	47.4		FO	001	0.507	0.503	Phase		0.5	0.000	1.000	0.0	20.0		174 547 1
	Z1/FS11	50	174	50	50	99	0,507	0,567		1,362	95	3,336	1,000	20	33,8	В	K1 - von W - L
	Z1/FS12	920	1958	50	50	1109	0,829	0,567	4,481	23,283	95	31,444	1,022	193	30,5	В	K1 - von W - G+R
	Z3/FS31	68	219	50	50	124	0,548	0,567	0,722	1,791	95	4,054	1,013	25	33,2	В	K3 - von O - L
	Z3/FS32	869	1953	50	50	1107	0,785	0,567	2,963	19,921	95	27,470	1,024	169	24,9	В	K3 - von O - G
5																	
6																	
7																	
^ I	70/5004	00.4	1000	0.5	00	450	0.000	0011	Phase		0.5	10.40.1	1.000	4451	00.0		IVO NI L O
	Z2/FS21	384	1330	25	30	458	0,838	0,344		13,054	95	19,164	1,028	118	60,2	D	K2 - von N - L+G
	Z2/FS22	44	1270	25	9	141	0,312	0,111	0,259	1,271	95	3,178	1,041	20	43,4	С	K4 - von S - L+G
10																	
11																	
12																	
13																	
14													i j				1
									Phase	3							
15																	
16													į				
17																	
18																	
19																	<u>}</u>
									Phase	4							
20																	
21													i i				
22																	
23																	
24															- 1		
									Phase	5							
25																	
26																	
27																	
28																	
29															- 9		
									Phase	6						-	
30			1			1	1								1		
31																	
32						1											
33	-	-										 					
34						1	_									8	
J+4		-					!		Knotenpu	ınkt							
									тиносепри	a an							
	Summa	2225															
dow	Summe: Mittelwert:	2335				3038	0,789								33,7		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Bestand

							Kn	otenpun	kt mit Lic	htsignala	nlage						
		-6				Bewe	ertung de					gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
Kı	notenpunkt:		rankfurte	r Str Le	ssingstr.												
	eitabschnitt:																
	Bearbeiter:																
	t _u =		[s]	f _{in} =	1,107	[-]	T =	1,0	[h]								
If al	Bez.	179730												-		0.011	Domoslancon
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	ŧν	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[S]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
1	Z1/FS11	295	1924	41	41	898	0,329	0,467	0,285	4,931	95	8,687	1,040	54	16,3	A	K1 - von W - R
2	Z1/FS12	637	1969	41	38	853	0,746	0,433	2,260	15,598	95	22,278	1,016	136	30,9	В	K2 - von W - G
	Z3/FS31	584	1946	41	38	843	0,693	0,433	1,598	13,419	95	19,614	1,028	121	27,5	В	K3 - von O - G
4						- 10	5,550	-,.50	.,.550	,		1 1	.,		2.,0		
5																	
6	Ų.											\vdash					
7	-	-	_					-				 					
1.			/						Phase	2							
0 1	72/5022	EOL	2000	47	47	400	0.440	0.200			0E	2 252	1.000	ഹി	20.0	В	I/A uon O L
	Z3/FS32	59	2000	17	17	400	0,148	0,200		1,313	95	3,252	1,000	20	30,6	В	K4 - von O - L
	Z2/FS21	45	1840	17	39	818	0,055	0,444	0,032	0,673	95	2,061	1,040	13	14,4	Α	K5 - von S - R
10												\vdash					
11																	
12																	
13										_							
14																	1
									Phase:	3							
15	Z2/FS22	397	1911	17	17	382	1,038	0,200	19,804	29,729	95	38,951	1,016	237	222,5	F	K6 - von S - L
16										-							
17																	
18										_							
19	4																
		_							Phase	4							
20																	
21												\vdash					
22								-				 					
23												-					
												\vdash			-		
24									Dhaa	F							
or I	-	_			_				Phase	9					-		
25												\vdash					
26																	
27																	
28																	The second second
29																	
									Phase	6						222	
30																	December 1
31																	
32																	
33																	
34	4											\vdash					
54									Knotenpu	ınkt							
	Summe:	2017				4195			Thotelipu	III.							
00144	. Mittelwert:	2017				4190	0,694								65,1		
gen												-		227		-	
	Maximum:		0 3				1,038		. 50	0				237	222,5	F	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Bestand

										htsignala							
						Bewe	rtung de	r Verkehi	rsqualität	im Kraft	fahrzeug	gverkehr					
		VU Franz	zenburg														
7.7		Wetzlar															
	notenpunkt:																
	eitabschnitt:				1												
	Bearbeiter:																
	t _o =	90	[S]	f _{in} =	1,030	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	X	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	A CONTRACTOR AND A CONT
- 1	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	(1)	(-)	(~)		(°)	(*)		(°)	Phase		(3.4)	(, -)	(,~)	12.7	[,0]	(10)	(3.7)
1	Z1/FS11	253	1993	41	41	930	0,272	0,467	0,194	4,058	95	7,465	1,004	45	15,4	A	K1 - von W - R
	Z1/FS12	565	1984	41	38	860	0,657	0,433	1,034	12,225	95	18,138	1,008	110	24,5	В	K2 - von W - G
	Z3/FS31	686	1984	41	38	860	0,798	0,433	2,196	17,049	95	24,032	1,008	145	31,3	В	K3 - von O - G
4		550				- 550	0,,00	0,00	2,.50	11,0 70	-00	21,002	1,000	. 70	0.,0		
5							-										T.
6																	
7							- 1										
							-	-	Phase :	2					-	S.	
8	Z3/FS32	49	2000	17	17	400	0,123	0,200	0,072	1,077	95	2,832	1,000	17	30,2	В	K4 - von O - L
	Z2/FS21	72	1914	17	39	851	0,085	0,444	0,048	1,087	95	2,850	1,000	17	14,6	A	K5 - von S - R
10		1.2	1017			001	5,000	×, 117	2,010	,,007		2,000	.,000	1.6	1 1,0	- 13	
11																	
12															-	4	
13	9	_					-										
14							_	- 6								8	
17									Phase :	3							
15	Z2/FS22	238	1934	17	17	387	0,615	0,200	0,847	6,275	95	10,512	1,004	63	40,7	С	K6 - von S - L
16	LZN OZZ	200	1004	-14	-1.7	307	0,010	0,200	0,047	0,275	- 55	10,012	1,004	- 00	70,7		10-10113-L
17															- 39		1
18							-										1
19								- 1								9	
10									Phase	1				-			
20						1		-	1 11000	1					-		
21																9	
22																	1
23							-										
24																	
									Phase	5				-		lk	
25						П		1		1		П	1		-		
26							- 1	4									
27							- 1										
28							-								-		
29																	
20	-								Phase	6				-			
30	1					1		1		1			1				The second second
31																	
32															- 39		1
33							-								-		
34	4								-								
54								1	(notenpu	ınkt							
	Summe:	1863				4287			I								
		1000				7207	0,615	-							27,6	-	
dew	. Mittelwert:																

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Prognosefall A

							Kn	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe			rsqualität			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kr	notenpunkt:	KP 406: F	rankfurte	r Str Le	essinastr.												
	itabschnitt:																
	Bearbeiter:																
	t _u =		[s]	f _{in} =	1,107	f-1	T =	1,0	[h]								
16-1	Bez.	1,787,33							2000								Description of the last of the
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1 2	Z1/FS11	253	1905	41	41	889	0,285	0,467	0,230	4,120	95	7,552	1,050	48	15,7	A	K1 - von W - R
2 2	Z1/FS12	684	1966	41	38	852	0,803	0,433	3,535	18,394	95	25,647	1.017	157	37,1	С	K2 - von W - G
	Z3/FS31	694	1947	41	38	844	0,823	0,433	4,262	19,539	95	27.015	1,027	167	40,6	Ĉ	K3 - von O - G
4							-,-20	,	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,,,,,,	,		,0	<u> </u>	
5	-	-													-		
6			-									\vdash					
7			-			 											Ď.
1	-		//						Phase :	,							
0 1	72/5022	70	2000	17	17	400	0.140	0.200			0E	2 420	4.000	40	20.5	Б	I/A yes O I
	Z3/FS32	56	2000	17	17	400	0,140	0,200		1,244	95	3,130	1,000	19	30,5	В	K4 - von O - L
	Z2/FS21	47	1843	17	39	819	0,057	0,444	0,034	0,704	95	2,123	1,038	13	14,4	A	K5 - von S - R
10												-					
11																	
12																	
13																	T-
14																	
_			•			•			Phase 3	3		•				•	*
15 2	Z2/FS22	472	1913	17	17	383	1,234	0,200	47,241	59,041	95	72,036	1,015	439	480,6	F	K6 - von S - L
16				-													
17										1		t					
18		-										1					Y
19	4																
13									Phase	1							
20		-			-		_	_	I Hase	_			-	_			
			$\overline{}$						-			\vdash		_			
21						-						-				at-	
22												\vdash					
23												\vdash					
24																	
									Phase :	5							
25																	
26										-							T.
27																	
28																	
29	-							-									
-									Phase	6							
30			1			1						T T					1
31	4																
32					-							1				-	
	-					 						-					
33														\vdash			
34																	
	_								Knotenpu	ınkt							
1000000	Summe:	2206				4187										,	
gew.	. Mittelwert:		11		J. J		0,809								130,0		
	Maximum:						1,234		- 65					439	480,6	F	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Prognosefall A

							Kn	otenpun	kt mit Lic	htsignala	nlage						
		-0.0				Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Kı	notenpunkt:	KP 406: F	- rankfurte	r Str Le	essingstr.												
	eitabschnitt:																
	Bearbeiter:																
	t _u =		[s]		1,030	[-1	T =	1,0	[h]								
		17/8720		f _{in} =			_	250000	5000	_							
lfd.	Bez.	q _{Kfz}	q_s	t _F	t _F	C	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[S]	[-]	1
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
	(1)	(-)	(~)		(*)	(%)	- (-)	(*)	Phase		(1.5)	(12)	[10]	(,,,	[10]	(10)	
1 1	Z1/FS11	319	1989	41	41	928	0.344	0.467		5,339	95	9.247	1.006	56	16.3	Α	K1 - von W - R
	Z1/FS12	677	1979	41	75.55	858	0,789	0,433		16,660			1,000	143	30,7		K2 - von W - G
					38						95	23,564				В	
	Z3/FS31	757	1979	41	38	857	0,883	0,433	4,222	21,590	95	29,449	1,011	179	41,1	С	K3 - von O - G
4			/							1							
5																l.	
6	Ĭ.																1
7										1							
									Phase:	2							0-
8	Z3/FS32	51	2000	17	17	400	0,128	0,200	0,076	1,122	95	2,914	1,000	17	30,2	В	K4 - von O - L
	Z2/FS21	74	1914	17	39	851	0.087	0.444		1,118	95	2,907	1.000	17	14.7	A	K5 - von S - R
10							0,001	*,	0,010	.,		2,001	1,000		1.145		
11	ý –											\vdash			-		
12		-		_		 		_	-			1	-				
												\vdash					
13												-			-		
14																	
									Phase:	3							
15	Z2/FS22	238	1934	17	17	387	0,615	0,200	0,847	6,275	95	10,512	1,004	63	40,7	C	K6 - von S - L
16	i i																
17																	
18	ľ									-							1
19	7																
10			-						Phase	1		-	-				
20	- 1				-				1 Huse						-		
	2						_		_			\vdash		_			
21		-				-						-			-		
22			\									\vdash					
23												\square					
24	Ĩ																
					1				Phase:	5							
25																	
26	ř.															1	T .
27																	
28	b)	-															
29	Ž.					 	-		1			\vdash			-		
20									Phase	-							
20 1			-		-	1		-	Filase	-		_		-	-	6	
30												\vdash					
31																	1
32			/														
33																	
34	r i																1
						•		1	Knotenpu	ınkt		•		-			
	Summe:	2116	1		1	4281			1								
		2110				7201	0,696						-		32,8	0	
dew	. Mittelwert:																

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag im Prognosefall B

							Kn	otenpun	kt mit Lic	htsignala	nlage						
		-6.6				Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Kno		KP 406: F	rankfurte	r Str Le	essinastr												
	tabschnitt:																
					טט												
Е	Bearbeiter:								10000								
	t _u =	90	[s]	f _{in} =	1,107	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{//}	QSV	Bemerkungen
Nr.	0.000.000.000	[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	NUMBER OF STREET
-	740		-														64.70
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
1281									Phase								
1 Z	1/FS11	271	1905	41	41	889	0,305	0,467	0,254	4,467	95	8,041	1,050	51	16,0	A	K1 - von W - R
2 Z	1/FS12	730	1964	41	38	851	0,858	0,433	6,270	22,731	95	30,795	1,018	188	49,5	С	K2 - von W - G
	3/FS31	750	1942	41	38	841	0,891	0,433	9,471	26,782	95	35,535	1,030	220	64,1	D	K3 - von O - G
4																	
5								_									
6	-	-	-				_					\vdash					
						—						-			20		
7			1														
									Phase								-
	3/FS32	56	2000	17	17	400	0,140	0,200		1,244	95	3,130	1,000	19	30,5	В	K4 - von O - L
9 Z	2/FS21	47	1843	17	39	819	0,057	0,444	0,034	0,704	95	2,123	1,038	13	14,4	Α	K5 - von S - R
10																	
11							\neg						- 3				7
12		-					-					1				1	
13	-	-	_			-	-					_	-			_	1
			_				_			_		\vdash					
14																	
									Phase								
	2/FS22	508	1908	17	17	382	1,331	0,200	65,155	77,855	95	92,777	1,018	567	650,7	F	K6 - von S - L
16															- 3		
17																	
18																	Ti-
19	-						-						-				
10									Phase	1							
00	-	-			-			_	Illase	-			-		-	-	
20			_									\vdash					
21																	[
22																	
23																	
24																	1
-			•				٠.		Phase	5							
25		1	Т			1	ı	1							1		
26			-									\vdash					
27		-	-	_		—	_					\vdash					
28												\vdash					
29																	
									Phase	6							
30																	
31																	
32															-		
33												 					
												\vdash					
34																	
									Knotenpu	ınkt							
	Summe:	2362				4182											
gew. I	Mittelwert:				I I		0,874								178,4		
	Maximum:						1,331							567	650,7		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag im Prognosefall B

							Kn	otenpun	kt mit Lic	htsignala	nlage						
		-6				Bewe			rsqualität			gverkehr					
	Projekt:	VU Franz	zenburg														
	Stadt:	Wetzlar															
Kr	notenpunkt:	KP 406: I	- rankfurte	r Str Le	essinastr.												
	itabschnitt:																
	Bearbeiter:																
	t _u =		[s]	f _{in} =	1,030	[-1	T =	1,0	[h]								
16-1		17/89200					_	250000	2000								December 201
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{VV}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	1
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	Z1/FS11	343	1979	41	41	924	0,371	0,467	0,309	5,841	95	9,929	1,010	60	16,7	A	K1 - von W - R
2	Z1/FS12	729	1973	41	38	855	0,853	0,433	3,253	19,632	95	27,125	1,014	165	36,6	С	K2 - von W - G
	Z3/FS31	817	1974	41	38	855	0,955	0,433	9,219	28,967	95	38,069	1,013	231	63,5	D	K3 - von O - G
4							-,		-,-	,							
5	-																
6							-					\vdash					
7						 	-										
1.	-								Phase :	,							
0 1	72/5022	EA	2000	17	17	400	0.400	0.200			0E	2 044	4.000	47	20.2	В	I/A you O I
	Z3/FS32	51	2000	17	17	400	0,128	0,200		1,122	95	2,914	1,000	17	30,2	В	K4 - von O - L
	Z2/FS21	74	1914	17	39	851	0,087	0,444	0,049	1,118	95	2,907	1,000	17	14,7	Α	K5 - von S - R
10												-					
11																	1
12																	
13																X.	
14																	
						•	•		Phase 3	3		•	-	•			
15	Z2/FS22	258	1928	17	17	386	0,669	0,200	1,075	7,032	95	11,517	1,007	70	43,3	С	K6 - von S - L
16																	
17												t					
18	· ·																T
19	4																
13									Phase	1						l	
20		_			-		_		I Hase	_			-		-	_	
							_		-			\vdash		_			
21						-						-				44	
22												\vdash					
23												\vdash					
24		L															
									Phase :	5							
25																	
26										-							T
27																	
28																	T-
29	-																
		-							Phase	6			,			•	
30						1						T T					II.
31	4																
32												1					
	-	_				 	-					-			_		
33																	
34																	
	_				_				Knotenpu	ınkt							
1000000	Summe:	2272				4270											
gew.	. Mittelwert:				J. J		0,755								43,2		
	Maximum:		V				0,955		- 0					231	63,5	D	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
Kn		KP 406: F	rankfurte	r Str Le	essingstr												
		Vormittag															
		HEINZ+F			0.												
					1 10 10 10 10 10 10 10 10 10 10 10 10 10		910	37.90									
	t _U =	90	[s]	f _{in} =	1,107	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	ţ,	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _{vv}	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-1	
-	{1}			[3] {4}	[5] {5}					{10}	{11}		{13}				{17}
	{1}	{2}	{3}	{4}	{O}	-{6}	{7}	{8}	{9}		{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	71/FS11	253	1905	41	41	889	0,285	0,467	0,230	4,120	95	7,552	1,050	48	15,7	Α	K1 - von W - R
	71/FS12	684	1966	41	38	852	0,803	0,433	3,535	18,394	95	25,647	1,017	157	37,1	C	K2 - von W - G
3 Z	Z3/FS31	694	1947	41	38	844	0,823	0,433	4,262	19,539	95	27,015	1,027	167	40,6	С	K3 - von O - G
4																	
5																	T
6																9	
7			-				-					 					
-t									Phase								
^ I=	70/5000		0000			100	0.000	0.07-		4	0.5	0.000	4 00-	5,51		-	174
	23/FS32	56	2000	17	6	156	0,360	0,078		1,656	95	3,832	1,000	23	47,0	С	K4 - von O - L
	Z2/FS21	47	1843	17	39	819	0,057	0,444	0,034	0,704	95	2,123	1,038	13	14,4	A	K5 - von S - R
10																	
11	- 1			ė į						-					-	1	
12												i i					
13		-		_				-							-		
14	-						_					\vdash					
14									Disease								
									Phase						72.21		
	72/FS22	472	1913	17	28	616	0,766	0,322	2,547	13,166	95	19,302	1,015	118	42,3	С	K6 - von S - L
16																	
17																	
18																	
19													1				
_		-	•				-		Phase	4							-
20		1															li .
21	-						_					\vdash					
	-					-			-	_		 		-			
22														-			
23												\vdash					
24																	
									Phase	5							
25																	
26																	
27															-		
28			_	_		-						\vdash		-			
												\vdash				8	
29						.											
									Phase	5							
30																	
31																	1
32																	
33		-															
34			\rightarrow									\vdash					
J4				_		l			Knoteer	nkt							
	O	222-1							Knotenpu	ITIKT							
	Summe:	2206				4176											
	Mittelwert:				J		0,715								36,6		
10	Maximum:		9				0,823		0.00					167	47,0	C	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls A

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
		Wetzlar															
K	notenpunkt:	KP 406: F	rankfurte	r Str Le	essinastr.												
		HEINZ+F			J. 20.72												
	t _u =		[s]	f _{in} =	1,030	f-1	Τ=	1,0	[h]								
16 -1		1770			71557A307												Description of the last of the
lfd.	Bez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	Z1/FS11	319	1989	41	42	950	0,336	0,478	0,264	5,224	95	9,090	1,006	55	15,6	A	K1 - von W - R
2	Z1/FS12	677	1979	41	39	880	0,770	0,444	1,849	16,141	95	22,935	1,011	139	28,7	В	K2 - von W - G
	Z3/FS31	757	1979	41	39	879	0,861	0,444	3,487	20,515	95	28,175	1,011	171	36,8	С	K3 - von O - G
4							-,,		-,	22,210		20,0			,0		
5		-															
6	2																
7		1	-			 											Ď.
1									Phase	2						l	
8	Z3/FS32	51	2000	17	12	289	0,177	0,144	0,111	1,230	95	3,106	1,000	19	35,2	С	K4 - von O - L
		74			38							2,948					
	Z2/FS21	14	1914	17	38	829	0,089	0,433	0,051	1,141	95	2,948	1,000	18	15,3	A	K5 - von S - R
10																	
11																	1
12																	
13																N.	
14																	1
									Phase	3							
15	Z2/FS22	238	1934	17	20	451	0,527	0,233	0,589	5,790	95	9,860	1,004	59	34,9	В	K6 - von S - L
16	i i																
17																	
18										-							T-
19	2						\neg										
		-	-			_			Phase	4			-				
20		1			-			-	1 11000					Г Т			
21	2						-										
22		-	_			1	-	-			_		-		-		1
23		1												-			
		\vdash															
24		1							Db							l	
OF.									Phase	0			-		-		
25		\vdash															
26																	L.
27																	
28																	
	26																
29									Phase	6							
29										-							
30									_								
30																	1
30 31	ž.																
30 31 32																	7
30 31 32 33	7																
30 31 32	2								(notenn	ınkt							
30 31 32 33	Summer	24.16				4270			Knotenpu	ınkt							
30 31 32 33 34	Summe:	2116	4			4279	0,671		Knotenpu	ınkt					30,0		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Vormittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B

							Kn	otenpun	kt mit Lic	htsignala	nlage						
						Bewe			rsqualitä			gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
K	notenpunkt:	KP 406: F	rankfurte	r Str Le	essingstr.												
Z																	
	Bearbeiter:	HEINZ+F	EIER Gm	bH													
	t _u =		[s]	f _{in} =	1,107	[-]	Τ=	1,0	[h]								
Ifal	Bez.	177072		_	71000000					NI.	-	T 50 - 1			-	0017	Domorlangon
lfd.	Dez.	q _{Kfz}	qs	t _F	t _F	С	Х	f _A	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	t _W	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	[-]	
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase	1							
1	Z1/FS11	271	1905	41	41	889	0,305	0,467	0,254	4,467	95	8,041	1,050	51	16,0	A	K1 - von W - R
2	Z1/FS12	730	1964	41	38	851	0,858	0,433	6,270	22,731	95	30,795	1,018	188	49,5	С	K2 - von W - G
3	Z3/FS31	750	1942	41	38	841	0,891	0,433	9,471	26,782	95	35,535	1,030	220	64,1	D	K3 - von O - G
4															100		
5																	
6	2																
7																1	
150									Phase	2				_		L.	
8	Z3/FS32	56	2000	17	6	156	0,360	0,078	0,327	1,656	95	3,832	1,000	23	47.0	С	K4 - von O - L
9	Z2/FS21	47	1843	17	39	819	0,360	0,078	0,327	0.704	95	2,123	1,000	13	14.4	A	K5 - von S - R
	ZZFSZT	47	1843	17	39	819	0,057	0,444	0,034	0,704	95	2,123	1,038	13	14,4	А	K5 - V0N 5 - K
10																	
11																	1
12																	
13										_							T.
14																	
									Phase	3							
15	Z2/FS22	508	1902	17	28	613	0,829	0,322	4,303	16,047	95	22,822	1,018	139	53,5	D	K6 - von S - L
16																	
17																	
18										-						1	I
19	2			-													
			•						Phase	4			-				
20																	
21	4																
22																1	
23																	
24						 	_									8	
24									Phase	5							
ΩF.	-	1	-		-	1	-		rnase	0		1	- 1	-	-		
25	ů.					-				-				-		8	
26																	
27			7/							l,							
28																	
29	Ĭ i																
									Phase	6							
30										-							
00	Í									-							T
31																	
31 32												-	_				
31 32 33																10	
31 32 33	9 9								Knotenni	ınkt							
31 32	Qummo	2362				A160			Knotenpι	ınkt					- 78		
31 32 33 34	Summe:	2362	0 = -			4169	0,771		Knotenpu	ınkt					50,4		

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 406 in der Spitzenstunde am Nachmittag unter Berücksichtigung der modifizierten Steuerung und den Belastungen des Prognosefalls B

							Kno	otenpuni	kt mit Lic	htsignala	nlage						
						Bewe	rtung der					gverkehr					
	Projekt:	VU Franz	enburg														
	Stadt:	Wetzlar															
Knote	enpunkt:	KP 406: F	rankfurte	r Str Le	essinastr.												
		Nachmitte															
		HEINZ+F			90												
De		_			1 00000	F		110	0.00								
	t _u =	90	[S]	f _{in} =	1,030	[-]	T =	1,0	[h]								
lfd.	Bez.	q _{Kfz}	qs	t _F	ţ _F	С	Х	fA	N _{GE}	N _{MS}	S	N _{MS,S}	fsv	Ls	ţ _V	QSV	Bemerkungen
Nr.		[Kfz/h]	[Kfz/h]	[s]	[s]	[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[%]	[Kfz]	[-]	[m]	[s]	F-1	
_	(4)																(4.7)
	{1}	{2}	{3}	{4}	{5}	{6}	{7}	{8}	{9}	{10}	{11}	{12}	{13}	{14}	{15}	{16}	{17}
									Phase								
	/FS11	343	1979	41	44	990	0,347	0,500	0,277	5,463	95	9,417	1,010	57	14,6	A	K1 - von W - R
2 Z1/	/FS12	729	1973	41	41	921	0,792	0,467	2,118	17,533	95	24,615	1,014	150	28,6	В	K2 - von W - G
3 Z3/	/FS31	817	1974	41	41	921	0,887	0,467	4,432	23,018	95	31,133	1,013	189	39,2	С	K3 - von O - G
4																	
5																	T
6																	
7																	
1									Dh	2							
^ I=-	/E002		0000	4-		20-1	A 1	A	Phase		0.5	0	4 000	4.1	05-1		174
	/FS32	51	2000	17	12	289	0,177	0,144	0,111	1,230	95	3,106	1,000	19	35,2	С	K4 - von O - L
	/FS21	74	1914	17	36	787	0,094	0,411	0,054	1,187	95	3,029	1,000	18	16,5	A	K5 - von S - R
10																	
11																	T
12																	
13							_						-		-		
14	_					 	_	-									
14									Disease								
						17.00			Phase					221			
	JFS22	258	1928	17	19	429	0,602	0,222	0,803	6,594	95	10,937	1,007	66	38,2	С	K6 - von S - L
16																	1
17										1							
18																	
19	- 4			e e											9	9	
									Phase	4							•
20																	1
21						\vdash	-	-									
	- 1			-			-+										
22							\rightarrow					-					
23								- 1									
24																	
									Phase	5							
25																	
26																	T
27																	
28							_										
29							\rightarrow					\vdash				9	
20									Dhar								
I		_	-		_		-	-1	Phase	0			-		-		
30								-									
31																1	
32).							1
33																	
34																9	
									√notenp∟	ınkt							
	Summe:	2272		_		4336	-	- 15	Moreithr	iiiit.							
		2212	9			4336	0.704	-							24.4		
	littelwert:						0,701							100	31,1		
M	laximum:		0 - 3				0,887		E 05	0				189	39,2	С	

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Bestand

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

			Kapazitäte	n der Zufa	hrten		
Zufahrt	Fahrzeuge Zufahrt q _{zi} [Fz/h]	Pkw-E / Fz Zufahrt f _{PE,Zi} [-]	Verkehrsstärke in der Zufahrt q _{PE,Zi} [Pkw-E/h]	Verkehrsstärke im Kreis q _{PE,Ki} [Pkw-E/h]	Grundkapazität G _{PE,i} [Pkw-E/h]	Abminderungs- faktor Fußgänger f _{f,i}	Kapazität C _{PE,i} [Pkw-E/h]
1	39	1,000	39	226	1035	1,000	1035
2	309	1,014	313	14	1225	1,000	1225
3	157	1,031	162	227	1034	1,000	1034
4	129	1,011	130	271	996	1,000	996

	Be	urteilung der Verkehr	squalität	
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-
Zufahrt	C	R,	t _{w.i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	1035	996	3,6	Α
2	1208	899	4,0	A
3	1002	845	4,3	Α
4	985	856	4,2	Α
		•	erreichbare Qualitätsstufe QSV _{ges}	Α

	Beurteilung der	Ausfahrten
Ausfahrt	Verkehrsstärke [Pkw-E/h]	
1	175	nicht ausgelastet
2	251	nicht ausgelastet
3	100	nicht ausgelastet
4	118	nicht ausgelastet

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße Zufahrt 4: Sportparkstraße

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Bestand

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
Zufahrt	Fahrzeuge Zufahrt q _{zi}	Pkw-E / Fz Zufahrt f _{PE,Zi}	Verkehrsstärke in der Zufahrt q _{PE,Zi}	Verkehrsstärke im Kreis q _{PE,Ki}	Grundkapazität G _{PE,i}	Abminderungs- faktor Fußgänger f _{f,i}	Kapazität C _{PE,i}
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	128	1,005	129	230	1031	1,000	1031
2	190	1,011	192	49	1193	1,000	1193
3	124	1,006	125	141	1110	1,000	1110
4	135	1,005	136	167	1087	1,000	1087

Beurteilung der Verkehrsqualität					
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-	
Zufahrt	Ci	R _i	t _{w.i}	stufe	
	[Fz/h]	[Fz/h]	[s]	QSV	
1	1026	898	4,0	Α	
2	1180	990	3,6	A	
3	1104	980	3,7	Α	
4	1081	946	3,8	Α	
			erreichbare Qualitätsstufe QSV _{ges}	Α	

Beurteilung der Ausfahrten					
Ausfahrt	Verkehrsstärke [Pkw-E/h]				
1	72	nicht ausgelastet			
2	310	nicht ausgelastet			
2 3	100	nicht ausgelastet			
4	99	nicht ausgelastet			

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Prognosefall A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Zufahrten						
Zufahrt	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
	q_{zi}	f _{PE,Zi}	q PE,Zi	q pe,ki	G _{PE,i}	f _{f,i}	C _{PE,i}
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	42	1,000	42	262	1004	1,000	1004
2	546	1,012	552	16	1223	1,000	1223
3	190	1,026	195	441	853	1,000	853
4	153	1,014	155	297	974	1,000	974

	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-
Zufahrt	Ci	R,	t _{w,i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	1004	962	3,7	Α
2	1209	663	5,4	Α
3	831	641	5,6	Α
4	961	808	4,5	Α
		- 10	erreichbare Qualitätsstufe QSV _{ges}	Α

	Beurteilung der Ausfahrten					
Ausfahrt	Verkehrsstärke [Pkw-E/h]					
1	190	nicht ausgelastet				
2	288	nicht ausgelastet				
3	128	nicht ausgelastet				
4	339	nicht ausgelastet				

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Prognosefall A

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

	Kapazitäten der Zufahrten						
Zufahrt	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
Zuranrt	q_{zi}	$f_{PE,Zi}$	$\mathbf{q}_{PE,Z_{I}}$	q PE,Ki	$G_{PE,i}$	f _{f,i}	$C_{PE,i}$
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	143	1,005	144	333	943	1,000	943
2	239	1,018	243	64	1179	1,000	1179
3	151	1,009	152	183	1072	1,000	1072
4	212	1,010	214	196	1061	1,000	1061

Beurteilung der Verkehrsqualität					
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-	
Zufahrt	Ci	R,	t _{w.i}	stufe	
	[Fz/h]	[Fz/h]	[s]	QSV	
1	939	796	4,5	Α	
2	1159	920	3,9	Α	
3	1062	911	3,9	Α	
4	1050	838	4,3	Α	
			erreichbare Qualitätsstufe QSV _{ges}	Α	

Beurteilung der Ausfahrten				
Ausfahrt	Verkehrsstärke [Pkw-E/h]			
1	78	nicht ausgelastet		
2	413	nicht ausgelastet		
3	124	nicht ausgelastet		
4	139	nicht ausgelastet		

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Vormittag im Prognosefall B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten							
7.6-6-4	Fahrzeuge Zufahrt	Pkw-E / Fz Zufahrt	Verkehrsstärke in der Zufahrt	Verkehrsstärke im Kreis	Grundkapazität	Abminderungs- faktor Fußgänger	Kapazität
Zufahrt	qzi	$f_{PE,Zi}$	q _{PE,Zi}	q PE,Ki	G _{PE,i}	f _{f,i}	$C_{PE,i}$
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]
1	45	1,000	45	295	975	1,000	975
2	590	1,017	600	19	1220	1,000	1220
3	206	1,031	212	469	830	1,000	830
4	176	1,024	180	314	959	1,000	959

Beurteilung der Verkehrsqualität				
	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts-
Zufahrt	Ci	R,	t _{w,i}	stufe
	[Fz/h]	[Fz/h]	[s]	QSV
1	975	930	3,9	Α
2	1200	610	5,9	A
3	805	599	6,0	Α
4	937	761	4,7	Α
		•	erreichbare Qualitätsstufe QSV _{ges}	Α

Beurteilung der Ausfahrten					
Ausfahrt	Verkehrsstärke [Pkw-E/h]				
1	199	nicht ausgelastet			
2	321	nicht ausgelastet			
3	150	nicht ausgelastet			
4	367	nicht ausgelastet			

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße

Ergebnisse der Leistungsfähigkeitsberechnungen für den Knotenpunkt 407 in der Spitzenstunde am Nachmittag im Prognosefall B

Aufschlüsselung nach Fahrzeugarten:

liegt vor, ohne genaue Differenzierung des Schwerverkehrs

Kapazitäten der Zufahrten								
Zufahrt	Fahrzeuge Zufahrt q _{zi}	Pkw-E / Fz Zufahrt f _{PEZi}	Verkehrsstärke in der Zufahrt qpe.zi	Verkehrsstärke im Kreis	Grundkapazität G _{PE.I}	Abminderungs- faktor Fußgänger	Kapazität C _{PE}	
	[Fz/h]	[-]	[Pkw-E/h]	[Pkw-E/h]	[Pkw-E/h]	[-]	[Pkw-E/h]	
1	153	1,009	154	360	920	1,000	920	
2	269	1,021	275	74	1170	1,000	1170	
3	166	1,013	168	214	1046	1,000	1046	
4	226	1,012	229	212	1047	1,000	1047	

	Kapazität	Kapazitätsreserve	mittlere Wartezeit	Qualitäts- stufe QSV
Zufahrt	Ci	R _i	t _{w,i}	
	[Fz/h]	[Fz/h]	[s]	
1	912	759	4,7	Α
2	1146	877	4,1	Α
3	1033	867	4,2	A
4	1034	808	4,5	Α
		•	erreichbare Qualitätsstufe QSV _{ges}	Α

Beurteilung der Ausfahrten					
Ausfahrt	Verkehrsstärke [Pkw-E/h]				
1	81	nicht ausgelastet			
2	440	nicht ausgelastet			
3	136	nicht ausgelastet			
4	170	nicht ausgelastet			

Zufahrt 1: Charlotte-Bamberg-Straße

Zufahrt 2: Spilburgstraße

Zufahrt 3: Schanzenfeldstraße